Contents

- 1. Potentiometric measuring principles
- 2. Amperometric measuring principles
- 3. Optical measuring principles
- 4. User-defined corrections
- 5. Performance specifications
- 6. Parameters
- 7. Solutions and gas mixtures

Index

Date of Issue

Reference manual

ABL800 FLEX

SYSTEM PERFORMANCE AND WARRANTY DISCLAIM

Radiometer cannot provide or verify instrument performance characteristics and accept warranty claims or product liability claims if the recommended procedures are not carried out, if accessories other than those recommended by Radiometer are used, or if instrument repairs are not carried out by authorized service representatives.

The instructions given in the Operator's Manual for the ABL800 FLEX must be observed in order to ensure proper instrument performance, and to avoid electrical hazards.

TRADEMARKS

ABL[™], Deep Picture[™], QUALICHECK[™] and Radiometer[™] are trademarks of Radiometer Medical ApS, Denmark.

ABL is registered in the USA.

QUALICHECK is registered in the USA and in some other countries.

COPYRIGHT

The contents of this document may not be reproduced in any form or communicated to any third party without the prior written consent of Radiometer Medical ApS.

While every effort is made to ensure the correctness of the information provided in this document Radiometer Medical ApS assumes no responsibility for errors or omissions which nevertheless may occur.

This document is subjected to change without notice.

©Radiometer Medical ApS, DK-2700 Brønshøj, Denmark, 2004. All Rights Reserved.

Contents

1.	Potentiometric measuring principles	1-1
	Overview	1-1
	General information	1-2
	Reference electrode	1-8
	pH electrode	1-9
	<i>p</i> CO ₂ electrode	1-14
	Electrolyte electrodes	1-22
	References	1-34
2.	Amperometric measuring principles	2-1
	Overview	2-1
	General information	2-2
	<i>p</i> O ₂ electrode	2-4
	Metabolite electrodes	2-12
3.	Optical measuring principles	3-1
	Overview	3-1
	Optical system	3-2
	Correcting for interferences	3-7
	Measurement and corrections	3-9
	References	3-14
4.	User-defined corrections	4-1
	Overview	4-1
	General information	4-2
	Correction factors for oximetry parameters and bilirubin	4-4
	Electrolyte and metabolite parameters	4-7
5.	Performance characteristics	5-1
	Overview	5-1
	Definition of terms and test conditions	5-2
	Performance test results – chart description	5-5
	Performance test results - pH	5-8
	Performance test results – <i>p</i> CO ₂	5-10
	Performance test results $-pO_2$	5-13
	Performance test results $- c \mathbf{K}^+$	5-16
	Performance test results $-cNa^+$	5-18
	Performance test results – cCl^{-}	5-20
	Performance test results – cCa^{2+}	5-22
	Performance test results $-cGlu$	5-24
	Performance test results $- c Lac$. 5-26
	Performance test results – <i>c</i> tHb	. 5-28
	Performance test results - oximetry	5-30
	Performance test results - bilirubin	5-40
	Additional information about FLEXMODE	5-46
	Interference tests	5 5 5 5
	NEIEIEUCES	3-33

6.	Parameters	6-	1
----	------------	----	---

Overview	6-1
General information	
Measured parameters	
Input parameters	6-14
Derived parameters	6-17
Units and numerical format of derived parameters	
List of equations	
Oxyhemoglobin dissociation curve (ODC)	6-43
Conversion of units	
Default values	6-50
Altitude correction	
References	

Index

Date of Issue

Warnings/Cautions

Definitions Throughout the manual, the descriptions may contain operational precautions and warnings.

Notice	Definition					
WARNING	Warning alerts users to potential serious outcomes to themselves or the patient (such as death, injury, or serious adverse events).					
PRECAUTION	Precaution alerts users to exercise special care necessary for the safe and effective use of the device. Precaution may include actions to be taken to avoid effects on patients or users that may not be potentially life threatening or result in serious injury, but about which the user should be aware. Precaution may also alert users to adverse effects on the device by use or misuse, and the care necessary to avoid such effects.					
NOTE	Notes give practical information.					

WARNING/
CAUTIONIn this manual a distinction between a warning and a caution is not made. Any
notice that alerts the user to possible dangers of any kind is given the title
WARNING/CAUTION.

List ofAll WARNING/CAUTION notices that appear in this manual are listed here inWARNING/alphabetical order.CAUTION(NOTES are not presented in list form.)

(NOTES are not presented in list form.)

Notices

• S5370 Cleaning Additive:

Very toxic by inhalation, in contact with skin and if swallowed. Danger of cumulative effects. May cause sensitisation by inhalation and skin contact. Toxic to aquatic organisms, may cause long term adverse effects in the aquatic environment. After contact with skin, wash immediately with plenty of water. Wear suitable protective clothing. In case of accident or if you feel unwell seek medical advice immediately (show the label if possible). The material and its container must be disposed of as hazardous waste.

• Electrolyte for E1001 Reference Electrode:

Irritating to eyes, respiratory system and skin. In case of contact with eyes, rinse immediately with plenty of water and seek medical advice

• Gas cylinders:

Pressurized container. Non-flammable compressed gas. Do not breathe gas. Gas mixtures containing less than 19.5 % oxygen may cause suffocation. Protect from sunlight and do not expose to temperatures exceeding 50 °C (122 °F). Store and use with adequate ventilation. Keep away from oil and grease. Do not refill.

1. Potentiometric measuring principles

Overview

Introduction	This chapter describes the potentiometric measuring principles and the pH, pCO_2 and electrolyte electrodes that are based on this principle.						
Contents	This chapter contains the following topics.						
	General information	1-2					
	Reference electrode	1-8					
	pH electrode	1-9					
	<i>p</i> CO ₂ electrode	1-14					
	Electrolyte electrodes	1-22					
	References	1-34					

General information

Potentiometric
methodThe potential of an electrode chain is recorded using a voltmeter, and related to the
concentration of the sample (the Nernst equation).

An electrode chain describes an electrical circuit consisting of a sample, electrode, reference electrode, voltmeter, membranes, and electrolyte solutions.

Every element in the electrode chain contributes a voltage to the total potential drop through the chain. Thus:

- When immersed in the appropriate electrolyte solution, both electrodes have separate potentials.
- The membrane junctions between the sample and electrolyte solutions also have separate potentials.

The potentiometric measuring principle is applied to pH, pCO_2 , and electrolyte electrodes.

Nernst equation The complete electrode chain potential therefore, is the sum of these separate potentials and is the quantity measured by the voltmeter.

$$E_{total} = E_0 + E_{sample}$$

where the final unknown potential (E_{sample}) can be calculated knowing the total electrode chain potential (E_{total}) and the standard potential (E_0) .

Having measured the unknown potential (E_{sample}) , the Nernst equation is then applied to determine the activity (a_x) of the species under study:

$$E_{sample} = E_0 + \frac{2.3 \text{R}T}{n\text{F}} \log a_x$$

where:

 $E_{0} = \text{standard electrode potential}$ $R = \text{gas constant (8.3143 Joule × K^{-1} × mol^{-1})}$ T = absolute temperature (310 K (37 °C))

Nernst equation			
(continued)	n	=	charge on the ion
	F	=	Faraday constant (96487 coulomb \times mol ⁻¹)
	a_x	=	activity of <i>x</i>
	The poten other conc	Nernst ntial <i>E</i> r quan entrati	t equation is rearranged to express the activity as a function of the E_{sample} . Having measured E_{sample} the activity can be calculated since all titles are already known. Finally the analyzer converts activity to ion.
	Stric flow: its co	tly spe ing thi oncent	eaking, the potential of an electrode chain or the magnitude of current rough an electrical chain is related to the activity of a substance, and not ration.
	Activ the n	vity ex nediur	spresses the 'effective concentration' of a species, taking non-ideality of n into account.
	<u>،</u> ،	•,	

Activity and concentration are related by the following equation:

$$a_{\rm x} = \gamma c_{\rm x}$$

where:

 $a_{\rm x}$ = the activity of the species x

- = the activity coefficient of species x under the measurement conditions γ (for ideal systems $\gamma = 1$)
- = the concentration of species (mmol/L) $C_{\rm X}$

NOTE: To be exact, activity is related to the molality of species x, i.e., the number of mmoles per kg of solvent. However molality is converted to concentration (molarity).

The analyzer automatically converts activities into concentrations [1]. The term concentration is therefore used in explanations of the measuring principles for each of the electrodes further on in this chapter.

The potentiometric measuring principle is applied in the pH, pCO_2 , and electrolyte electrodes. It is slightly different for the pCO_2 electrode, however, since the Nernst equation is not directly applied.

Calibration is an analytical process defining the functional relationship between the Calibration obtained readings or analytical responses and the concentration or other quantities present in the calibration material (liquid or gas). Thus, a calibrating solution or a gas mixture (for pCO_2 calibrations) is drawn into the measuring chamber and the analyzer adjusts itself to measure the known value of the liquid or gas.

Continued on next page

Calibration (continued) The electrodes are active elements and must be calibrated regularly. Signals from the electrodes change because of, e.g., protein build-up, worn-out membranes, aging electrodes, etc.

The responses from the electrodes when measuring on the calibrating solutions are checked to ensure that the amplified signals from the electrodes are converted to accurate values for an unknown sample. The relationship between the electrode amplifiers' output and the pH/pCO_2 /electrolyte electrodes are simple mathematical functions. Calibration data can therefore be determined by relating the electrode signals during the calibration process to the values of the calibrating solutions.

Calibration line The calibration line expresses the relationship between the potential measured at an electrode, and the concentration of the species specific to the electrode. The calibration line forms the basis of the scale used by the analyzer to convert electrode chain potentials to concentrations. Each electrode has a different calibration line.

The pH electrode is used as an example to illustrate how the calibration line is derived from two calibration solutions with known pH.

The calibration solutions give the following two points: -64 mV at pH 6.802 (Cal 2) and -100 mV at pH 7.398 (Cal 1)

Within the coverage range 6.300 to 8.000 the pH electrode is linear, and the relationship between potential and pH is linear, so a line can be drawn between the two points, as shown below:

This is a two-point calibration. In one-point calibration, only the position of the calibration line is determined. The slope of the calibration line is maintained from the last 2-point calibration.

The calibration line is stored in the computer and is used during measurement to convert the potential measured at the pH electrode during sample analysis to an actual pH value.

Calibration line To describe the actual condition of the electrode, its calibration line is compared to the calibration line of the theoretical electrode.

The position and slope of the calibration line compared to the theoretical calibration line are described by the status and sensitivity.

Sensitivity The electrode sensitivity illustrates the slope of the calibration line compared to the slope of the theoretical electrode.

The sensitivity of the theoretical electrode is 100 % or 1.00.

The sensitivity of an electrode is calculated as:

$$Sensitivity = \frac{Potential \ at \ 6.802 - Potential \ at \ 7.398}{61.5 \times (7.398 - 6.802)} \tag{\%}$$

where 61.5 = sensitivity of theoretical electrode.

Each electrode has its own sensitivity limits.

Status

Drift

Status reflects the deviation from the theoretical electrode at pH 7.400 and, therefore indicates the position of the calibration line.

A calibration line with the same slope as the theoretical calibration line (-61.5 mV/ pH) is drawn through this point.

The calibration line for the actual electrode deviates from that of the theoretical electrode. The status value describes this deviation.

Status of the actual pH electrode at pH 7.400 is calculated as:

 $Status = 7.400 - \frac{Meas. \ potential \ at \ 7.400 - Potential \ of \ theoretical \ electr. \ at \ 7.400}{61.5 \times 100}$

Each electrode has its own status limits.

Drift of an electrode is a measure of stability obtained by comparing the last accepted calibration with the previous calibration.

The following drift values are used:

- Drift 1 obtained on Cal 1 and/or Gas 1;
- Drift 2 obtained after a 2-point calibration.

The obtained drift values should not exceed the calibration drift tolerances. The drift tolerances can be changed in the Setup program, but Radiometer recommends using the default drift tolerances. Too narrow drift tolerances will cause electrode drift errors even for normal electrode fluctuations. If the drift tolerances are made wider, no warning will be given if the electrodes should become unstable. Significant measurement errors could result.

Calibration	he following calibration materials are used:						
materials	Calibration Material	Used for					
	Calibration Solutions 1 and 2: the exact composition of the calibration solutions is given in the barcode on the bottle label, which can be read into the analyzer using the barcode reader, or entered manually via the keyboard.	Calibration of the pH, and electrolyte electrodes					
	Gas 1 and Gas 2: each gas has a precise composition essential for determining the accuracy of the analyzer in each pCO_2 measurement; the exact composition of the calibration solutions is given in the barcode on the bottle label, which can be read into the analyzer using the barcode reader, or entered manually via the keyboard.	Calibration of the pCO_2 electrode					
	The Chemical Reference Laboratory at Radiometer is responsible for the accuracy of the calibrating solutions. Traceability certificates for the individual solutions are enclosed in Chapter 7: <i>Solutions and Gas Mixtures</i> .						
Measuring time	The measuring time of the electrode is independent of the electrode type. Electrode signals are registered at 0.982 second intervals during both calibrations and measurements. The registration of each electrode signal begins after the samples, calibration solutions, and calibration gases are in position in the measuring modules. The duration of each calibration is predetermined, as is the number of updatings of the electrodes' signals.						
Updatings	In general, the updatings from an electrode response are numbered from 1 to <i>upd</i> . <i>last</i> , where updating number 1 is the first updating and <i>upd.last</i> is the last. The diagram below schematically illustrates the electrode response that is calculated on uncorrected electrode updating values.						

1-7

Reference electrode

Description

The reference electrode is used in the measurement of pH and electrolyte parameters and is located in the pH/Blood Gas module.

The reference electrode maintains a stable, fixed potential against which other potential differences can be measured. The potential is not altered by sample composition.

A fixed potential is maintained at the reference electrode by the following equilibrium reactions:

 $\begin{array}{l} AgCl \Leftrightarrow Ag^+ + Cl^- \\ Ag^+ + e^- \Leftrightarrow Ag \end{array}$

These reactions are possible because the electrode is made from a Ag rod coated with AgCl to provide the Ag/Ag^+ equilibrium and determine the reference potential.

The electrolyte solution acts as a salt-bridge solution that maintains an electrical contact between the coated Ag wire and the sample. The solution is 4 M sodium formate (HCOONa), adjusted to pH 5.5 with hydrochloric acid.

The chloride concentration in the electrolyte solution is adjusted in accordance with the chloride concentration in the rinse solution, to reduce Cl⁻ exchange across the membrane, thereby obtaining a more stable potential.

The electrode is encased in the electrode jacket: The rubber ring seals the electrode in the jacket to prevent evaporation or leakage of the electrolyte solution.

The membrane consists of three separate membranes:

Membrane	Function
Inner	To limit diffusion through the membrane and stabilizes the whole membrane system.
Middle	To prevent protein interference.
Outer	To reduce the interchange of sample or rinse solution and HCOONa solution.

Packaging The E1001 reference electrode comes in a box with an insert explaining the preparation of the electrode and its use.

pH electrode

Description The pH electrode (E777) is a pH-sensitive glass electrode. The pH-sensitive glass membrane is located at the tip and seals the inner buffer solution with a constant and known pH.

The air bubble allows for expansion of the inner buffer solution when the electrode is thermostatted to $37 \,^{\circ}$ C.

The potential difference across the glass membrane is due to a change in the charge balance at the membrane.

The glass membrane is sensitive to H^+ ions. The metal ions in the glass are exchanged with protons on either side of the membrane, from the inner buffer solution on one side and the sample on the other.

A difference in the ion exchange on either side of the membrane occurs if the H^+ concentration (and therefore pH) is unequal on both sides. The number of positive and negative ions is no longer equal, so the potential difference across the membrane changes. If the H^+ concentrations on either side of the membrane are equal, the potential difference will theoretically be 0 mV.

Nernst equation	The theoretical sensitivity of the pH electrode at 37 °C being equal to -61.5 mV per pH unit, using pH = $-\log [\text{H}^+]$, and converting concentration to activity, the Nernst equation can be expressed as:					
	$E_{sample} = E_0 - 61.5$	×pH	mV			
Designation	The following symbols are used:					
	-61.5 mV/pH	=	Theoretical sensitivity of the pH electrode at 37 $^{\circ}$ C			
	E(pH,Cal2)	=	Potential of the pH electrode chain from a calibration measurement on Cal 2 solution			
	E(pH,Cal1)	=	Potential of the pH electrode chain from a calibration measurement on Cal 1 solution			
	E ₀ (pH,Cal1)	=	Standard potential of the pH electrode chain with a nominal $pH = 7.4$ (the approximate pH of Cal 1 solution)			

Designation (continued)	pH(Cal1,nom)	=	Nominal pH of Cal 1 solution $(pH = 7.4)$			
	pH(Cal1)	=	pH of Cal 1 solution			
	E(pH,Cal1prev)	=	Potential of the pH electrode chain from the previous calibration measurement on Cal 1 solution			
	Sens(pH,prev) fraction	=	Sensitivity of the pH electrode from the previous 2-point calibration			
	pH(Cal1,prev)	=	pH of Cal 1 solution in the previous calibration measurement			
	pH(Cal2)	=	pH of Cal 2 solution			
	Sens(pH)	=	Relative sensitivity of the pH electrode chain.			
Sensitivity	The sensitivity of the pH electrode ($Sens_{pH}$) is obtained from the calibration line obtained from a 2-point calibration on Calibration Solutions 1 and 2 (Cal 1 and Cal 2), and is calculated from the following equation:					
	$Sens(pH) = \frac{E(pH, Cal2) - E(pH, Cal1)}{-61.5 \times [pH(Cal2) - pH(Cal1)]} $ (fraction)					
	The sensitivity of	the j	pH electrode should fall between 0.92 - 1.03 or 92 -103 %.			
Status	The status of the pH electrode is calculated from the following equation: $Status(pH) = \frac{E(pH, Cal1) - E_0(pH, Cal1)}{61.5} + 2 pH(Cal1, nom) - pH(Cal1)$					
	The status of the	pH e	lectrode should fall between a pH of 6.7 and 8.1.			
Drift	Drift 1 is calculat	ed fr	om the following equation:			
	$Drift1(pH) = \frac{E(pH, Cal1) - E(pH, Cal1prev)}{-61.5 \times Sens(pH, prev)} - [pH(Cal1) - pH(Cal1, prev)]$					
	NOTE: Under normal circumstances, $pH(Cal1)-pH(Cal1,prev) = 0$. However in instances where the Cal 1 solution container has been replaced between two consecutive calibrations, $pH(Cal1)-pH(Cal1,prev) \neq 0$.					
	The default drift tolerances set by Radiometer for Drift 1 are \pm 0.020.					
	Drift 2 is calculated from the following equation:					
	$Drift 2(pH) = \frac{E(pH, Cal2) - E(pH, Cal1prev)}{-61.5 \times Sens(pH, prev)} - [pH(Cal2) - pH(Cal1, prev)]$					
	The default drift tolerances set by Radiometer for Drift 2 are \pm 0.020.					

Measurement	The sample pH is calculated as follows:					
	pH(sa	$ample) = \frac{E(pH, sample) - E(pH, Cal1)}{-61.5 \times Sens(pH)} + pH(Cal1)$				
Corrections	The measured pH value is then corrected for systematic deviations from the reference method using the following equation:					
	Equation A:					
	$pH(sample, corr.) = A_0 \times pH(sample) + A_1$					
	where:					
	pH(sample)	= uncorrected pH value of the sample				
	pH(sample,corr.)	= corrected pH value of the sample.				
	A_0	= instrument-dependent correction factor				
	A_1	= instrument-dependent cut-off				

Equation A+:

When an additional correction is needed, equation A is first used together with the constants for the FLEXMODE (195 and 165 μ L, no message) mode. Then the obtained results are put back into equation A as pH(sample) and then treated again, using the constants for the specific sample handling to obtain the corrected value.

Corrections are as follows:

ABL8XX FLEX	Mode	\mathbf{A}_{0}	A ₁	Equation
35/25/15	S195	0.9964	0.0150	А
	S95	0.9964	0.0150	А
	S85	0.9964	0.0150	А
	C95	1.007	-0.053	A+
	C55	1.025	-0.1880	A+
	FLEXMODE (no message)	0,9964	0.0150	А
	FLEXMODE (message 874)	1.007	-0.0530	A+
	FLEXMODE (message 873)	1.007	-0.0530	A+
	FLEXMODE (message 872)	1.0216	-0.1639	A+
	FLEXMODE (message 871)	1.025	-0.1880	A+

Corrections (continued)

ABL8XX FLEX	Mode	A_0	A_1	Equation
35/25/15	FLEXMODE (message 870)	1.030	-0.216	A+
(cont.)	FLEXMODE (message 869)	1.030	-0.216	A+
30/20/10	S85	0,9964	0.0150	А
	C55	1.025	-0.1880	A+
	FLEXMODE (no message)	1.0006	-0.0035	A+
	FLEXMODE (message 872)	1.0209	-0.1575	A+
	FLEXMODE (message 871)	1.025	-0.1880	A+
	FLEXMODE (message 870)	1.030	-0.216	A+
	FLEXMODE (message 869)	1.030	-0.216	A+
05	\$165	0,9964	0.0150	А
	S95	0,9964	0.0150	А
	S85	0,9964	0.0150	А
	C95	1.007	-0.053	A+
	C55	1.025	-0.1880	A+
	FLEXMODE (no message)	0,9964	0.0150	A+
	FLEXMODE (message 874)	1.007	-0.053	A+
	FLEXMODE (message 873)	1.007	-0.053	A+
	FLEXMODE (message 872)	1.0216	-0.1639	A+
	FLEXMODE (message 871)	1.025	-0.1880	A+
	FLEXMODE (message 870)	1.030	-0.216	A+
	FLEXMODE (message 869)	1.030	-0.216	A+
00				

Stability criteria The following stability criterion must be met to obtain a stable electrode response during 1- and 2-point **calibration**:

 $|pH(sample, upd.last) - pH(sample, upd.i)| \le pH(limit)$

The following stability criterion must be met to obtain a stable electrode response during **measurement**:

 $|pH(sample,upd.last) - pH(sample,upd.i)| \le pH(limit)$

where:

pH(sample,upd.last) =	pH value from the last updating with a measurement on calibration solution or sample. (The last updating is number 30).
pH(sample,upd.i) =	pH value for a given updating with a measurement on calibration solution or sample. (The relationship must be fulfilled for at least one of the updating numbers 20 or 21).
pH(limit) =	pH limiting value for the stability criterion (0.005).

pCO₂ electrode

Description

The pCO_2 electrode (E788) is a combined pH and Ag/AgCl reference electrode mounted in a plastic jacket, which is filled with a bicarbonate electrolyte.

The jacket is covered by a 20 μ m silicone membrane moulded on a 50 μ m nylon net. The net both reinforces the silicone membrane and serves as a spacer in order to trap a layer of the electrolyte between the membrane and the glass tip of the electrode. The electrolyte also contains glycerol to prevent collection of air bubbles in the electrode jacket thus improving electrode stability.

The membrane allows any uncharged molecules of CO_2 , O_2 , N_2 to pass through it. Charged ions such as H^+ will not pass. Consequently, dissolved CO_2 from the sample will diffuse into the thin layer of bicarbonate electrolyte until the equilibrium is reached.

This produces carbonic acid:

$$H_2O + CO_2 \iff H_2CO_3$$

Carbonic acid dissociates according to the following equilibrium reaction:

$$H_2CO_3 \Leftrightarrow H^+ + H_2CO_3^-$$

The release of H^+ ions changes the H^+ concentration, and therefore the pH of the solution on one side of the pH-sensitive glass membrane.

The concentration gradient of H^+ ions on the other side of the membrane affects the potential difference across the glass membrane. This change in potential across the glass membrane is measured by the voltmeter.

Nernst equation The Nernst equation is used to convert the potential reading into a pH value:

$$E_{\text{glass}} = E_0 - 61.5 \times \text{pH} \text{ (mV)}$$

where:

$E_{\rm glass}$	=	potential difference across the glass membrane
E_0	=	standard electrode potential
61.5 mV/pH	=	theoretical sensitivity of the pH electrode at 37 $^{\rm o}\mathrm{C}$

Nernst equationThe pH value is related to the partial pressure of CO_2 in the sample by the
following equation:

$$pH = pK_a + \log \frac{cHCO_3^2}{pCO_2 \times \alpha_{CO_3}}$$

where:

 $pK_a = -log K_a$, the equilibrium constant for the dissociation of carbonic acid in water

 $\alpha_{\rm CO_2}$ = solubility coefficient for CO₂ in water

The bicarbonate concentration $[\text{HCO}_3^-]$ is so large compared to $[\text{H}^+]$ that it can be considered constant. At constant temperatures α_{CO_2} is also constant. So the equation can be simplified to:

$$pH = K' - \log pCO_2$$

where:

K' is a constant incorporating the equilibrium constant for carbonic acid (K_a), the bicarbonate concentration, and the solubility coefficient α_{CO_2} .

$$K_a = \frac{c \mathbf{H}^+ \times c \mathbf{H} \mathbf{CO}_3^-}{\mathbf{CO}_2}$$
 is the equilibrium constant for carbonic acid.

 pCO_2 of the sample is then calculated from the equation above.

Designation	The following symbols are used:					
	<i>p</i> CO ₂ (Gas1), <i>p</i> CO ₂ (Gas2)	=	Pressure of CO_2 in Gas 1 or Gas 2, respectively			
	FCO ₂ (Gas1), FCO ₂ (Gas2)	=	Fraction of CO ₂ in Gas 1 or Gas 2, respectively			
	B _{Gas 1 or 2}	=	Pressure inside the measuring chamber during a measurement on Gas 1 or Gas 2 respectively			
	pH_2O	=	Water vapor pressure (6.2751 kPa at 37 °C)			
	$\begin{array}{l} E(CO_2,Gas1),\\ E(CO_2,Gas2) \end{array}$	=	Potential of the pCO_2 electrode from a measurement on Gas 1 or Gas 2, respectively			
	$Sens(pCO_2, theo)$	=	Theoretical (absolute) sensitivity of the pCO_2 electrode at 37 °C			
	Sens(<i>p</i> CO ₂ ,prev)	=	Relative sensitivity of the pCO_2 electrode from the previous 2-point calibration			

Designation	$E_0(CO_2,Gas1)$	=	Standard potential of the pCO_2 electrode with Gas 1			
(commuea)	E(CO ₂ ,Gas1,prev)	=	Potential of the pCO_2 electrode from the previous measurement on Gas 1			
	δ	=	difference between pCO_2 (sample) from the first and last updatings.			
	predict	=	extrapolated value for p CO ₂ .			
Sensitivity	The pCO_2 electrode	is cal	librated on two gases with known CO ₂ contents:			
	Gas 1: 5.61 % CO ₂ a	and G	bas 2: 11.22 % CO ₂ .			
	The exact compositi	ion of	the calibration gases is contained in their bar codes.			
	The partial pressures equations:	s of C	CO_2 in Gas 1 and Gas 2 are calculated from the following			
	pCO_2	(Gas	$s1$) = $FCO_2 (Gas1) \times (B_{Gas1} - pH_2O)$ kPa			
	pCO ₂	(Gas	$2) = FCO_2 (Gas2) \times (B_{Gas2} - pH_2O) \qquad kPa$			
	The relative sensitiv Sens(<i>p</i> 0	vity of CO ₂)	f the pCO ₂ electrode is calculated as follows: = $\frac{E(CO_2, Gas2) - E(CO_2, Gas1)}{Sens(pCO_2, theo) \times \log \frac{pCO_2(Gas2)}{2Sector}}$			
	$pCO_2(Gas1)$					
	The sensitivity of the or 85 - 100 %.	e pC0	D_2 electrode should fall between 0.85 -1.00			
Status	The status of the pC	O_2 el	ectrode is calculated as follows:			
	Status(p	CO ₂)	$) = pCO_{2}(Gas1) \times 10^{\frac{E(CO_{2},Gas1) - E_{0}(CO_{2},Gas1)}{Sens(pCO_{2},theo)}} kPa$			
	The status of the <i>p</i> CC kPa).	D_2 ele	ctrode should fall between 6.2-260 mmHg /(0.83-34.66			
Drift	Drift 1 is calculated	as fo	llows:			
	Drift $1(pCO_2) = p$	$\text{Drift 1}(p\text{CO}_2) = p\text{CO}_2(\text{Gas1}) \times 10^{\frac{\text{E}(\text{CO}_2, \text{Gas1}) - \text{E}(\text{CO}_2, \text{Gas1}, \text{prev})}{\text{Sens}(p\text{CO}_2, \text{prev}) \times \text{Sens}(p\text{CO}_2, \text{theo})}} - p\text{CO}_2(\text{Gas1}, \text{prev})\text{kPa}$				
	Drift 2 is calculated	as fo	llows:			
	Drift $2(pCO_2) = p$	pCO ₂	$(Gas2) \times 10^{\frac{E(CO_2, Gas2) - E(CO_2, Gas1, prev)}{Sens(pCO_2, prev) \times Sens(pCO_2, theo)}} - pCO_2(Gas2, prev) kPa$			

Drift (*continued*) The default drift tolerances set by Radiometer are as follows:

- for Drift 1 are \pm 0.33 kPa (2.5 mmHg)
- for Drift 2 are \pm 0.67 kPa (5.0 mmHg)

Measurement The pCO_2 value for a sample is calculated from the following equations:

pCO₂ (sample, upd*i*)=pCO₂ (gas1) × 10^{$E(CO_2 \text{sample, updi)}-E(CO_2 \text{Gas1})}/<math>e^{Sens(pCO_2, \text{prev})\times Sens(pCO_2, \text{theo})}$ </sup>

 $\delta = |pCO_2(\text{sample, upd30}) - pCO_2(\text{sample, upd1})|$

$$predict = \frac{pCO_2 \text{ (sample, upd6)} \times pCO_2 \text{ (sample, upd30)} - [pCO_2 \text{ (sample, upd18)}]^2}{pCO_2 \text{ (sample, upd6)} + pCO_2 \text{ (sample, upd30)} - 2 \times pCO_2 \text{ (sample, upd18)}}$$

For $\delta < 1.33$ kPa, $pCO_2(\text{sample}) = pCO_2(\text{sample,upd30})$

For 1.33 kPa $< \delta < 2.66$ kPa

$$pCO_2(\text{sample}) = \frac{\text{predict} \times (\delta - 1.33) + pCO_2(\text{sample}, \text{upd}30) \times (2.66 - \delta)}{1.33}$$

For $\delta \ge 2.66$ kPa, $pCO_2(\text{sample}) = \text{predict.}$

Corrections - The pCO_2 measured on a sample is then corrected for systematic deviations from the reference method using the following equations:

Equation A:

 $p\overline{CO}_2(\text{sample,corr}) = A_3 \times p\overline{CO}_2(\text{sample})^3 + A_2 \times p\overline{CO}_2(\text{sample})^2 + A_0 \times p\overline{CO}_2(\text{sample}) + A_1 \times (B - pH_2O)$

and

Equation B:

 $pCO_2(\text{sample,corr}) = B_1 \times pCO_2(\text{sample}) + B_0$

where:	$pCO_2(\text{sample})$	= uncorrected value of pCO_2 in the sample.
	<i>p</i> CO ₂ (sample, corr)	= corrected value of pCO_2 in the sample.
	A_0	= correction factor
	A_1	= correction factor
	A_2	= correction factor
	A ₃	= correction factor

Corrections - blood samples (continued)	B pH ₂ O	 = barometric pressure in kPa = partial pressure of saturated water vapor (6.2751 kPa)
	B_0	= correction cut-off
	\mathbf{B}_1	= correction factor

ABL8XX FLEX	Mode	Ao	$\mathbf{A_1}$	A ₂	A ₃	B ₀	B ₁	Eq.
35/25/15	S195	-0.003573	1.1126	0.0051	-0.0000002			А
	S95	-0.003573	1.1126	0.0051	-0.0000002	1.000	-0.016	A, B
	S85	-0.003573	1.1126	0.0051	-0.0000002			А
	C95	-0.003573	1.1126	0.0051	-0.0000002	1.013	0.010	A, B
	C55	-0.003573	1.1126	0.0051	-0.0000002	1.12	-0.28	A, B
	*FM (no message)	-0.003573	1.1126	0.0051	-0.0000002			A, B
	*FM (message 874)	-0.003573	1.1126	0.0051	-0.0000002	1.013	0.010	A, B
	*FM (message 873)	-0.003573	1.1126	0.0051	-0.0000002	1.013	0.010	A, B
	*FM (message 872)	-0.003573	1.1126	0.0051	-0.0000002	1.0884	-0.1619	A, B
	*FM (message 871)	-0.003573	1.1126	0.0051	-0.0000002	1.090	-0.150	A, B
30/20/10	S85	-0.003573	1.1126	0.0051	-0.0000002			А
	C 55	-0.003573	1.1126	0.0051	-0.0000002	1.12	-0.28	A, B
	*FM (no message)	-0.003573	1.1126	0.0051	-0.0000002	1.013	0.050	A, B
	*FM (message 872)	-0.003573	1.1126	0.0051	-0.0000002	1.0819	-0.0495	A, B
	*FM (message 871)	-0.003573	1.1126	0.0051	-0.0000002	1.090	-0.150	A, B

*FM = FLEXMODE

Corrections -	
blood samples	
(continued)	

ABL8XX FLEX	Mode	Ao	A ₁	A ₂	A ₃	B ₀	B ₁	Eq.
05	S165	-0.003573	1.1126	0.0051	-0.000002			А
	S95	-0.003573	1.1126	0.0051	-0.0000002	1.000	-0.016	A, B
	S85	-0.003573	1.1126	0.0051	-0.0000002			А
	C95	-0.003573	1.1126	0.0051	-0.0000002	1.013	0.010	A, B
	C55	-0.003573	1.1126	0.0051	-0.0000002	1.12	-0.28	A, B
	*FM (no message)	-0.003573	1.1126	0.0051	-0.0000002			A, B
	*FM (message 874)	-0.003573	1.1126	0.0051	-0.0000002	1.013	0.010	A, B
	*FM (message 873)	-0.003573	1.1126	0.0051	-0.0000002	1.013	0.010	A, B
	*FM (message 872)	-0.003573	1.1126	0.0051	-0.0000002	1.0884	-0.1619	A, B
	*FM (message 871)	-0.003573	1.1126	0.0051	-0.0000002	1.090	-0.150	A, B
00								

*FM = FLEXMODE.

Corrections - The pCO_2 measured from the sample is then corrected for systematic deviations from the reference method using the following equation: **samples** rCO_2 (completed on the sample is then corrected for systematic deviations for the reference method using the following equation:

 $pCO_2(\text{sample}, \text{corr}) = A_0 \times pCO_2(\text{sample}) + A_1 \times (B - pH_2O)$ Equation A

where:

<i>p</i> CO ₂ (sample)	= uncorrected pCO_2 value of a expired air sample
<i>p</i> CO ₂ (sample,corr)	= corrected pCO_2 value of a expired air sample
A_0	= instrument dependent correction factor
A_1	= instrument-dependent correction factor
В	= barometric pressure during the measurement
pH_2O	= partial pressure of saturated water vapour = 6.2751 kPa

ABL8XX FLEX	Mode	A ₀	$\mathbf{A_1}$	Equation
All	Expired air	1.0196	-0.00106	А

Stability criteria The following stability criterion must be met to obtain a stable electrode response during calibration:

 $|pCO_2(\text{sample, upd.last}) - pCO_2(\text{sample, upd.i})| \le pCO_2(\text{limit})$

This criterion is valid for calibrations using Gas 1 and Gas 2 where:

Parameter	<i>p</i> CO ₂ value from the last updating number		
	ABL805/835 FLEX	ABL800/830 FLEX	
<i>p</i> CO ₂ (sample,upd.last)	92	62	
<i>p</i> CO ₂ (sample,upd.i)	86 or 87 56 or 57		
	(the relationship must be fulfilled for at least one of the updating numbers)		

pCO₂(limit) value for the stability criterion is 0.40 kPa/3.0 mmHg.

The following stability criteria must be met to obtain a stable electrode response during measurement:

 $\delta = |pCO_2(\text{sample}, \text{upd.}30) - pCO_2(\text{sample}, \text{upd.}i)|$

For δ	Criterion
≤1.33 kPa	$ pCO_2(\text{sample}, \text{upd.}30) - pCO_2(\text{sample}, \text{upd.}16) \le 0.40$
>1.33 kPa	$-0.1 \le \frac{p \text{CO}_2(\text{sample, upd.30}) - p \text{CO}_2(\text{sample, upd.16})}{p \text{CO}_2(\text{sample, upd.16}) - p \text{CO}_2(\text{sample, upd.1})} < 0.5$

For $\delta > 1.33$ kPa:

if the following criteria are fulfilled, then no result is reported:

 $\frac{pCO_2(\text{sample}, \text{upd}.30) - pCO_2(\text{sample}, \text{upd}.16)}{pCO_2(\text{sample}, \text{upd}.16) - pCO_2(\text{sample}, \text{upd}.1)} < -1.0$

or

 $\frac{p\text{CO}_2(\text{sample}, \text{upd.}30) - p\text{CO}_2(\text{sample}, \text{upd.}16)}{p\text{CO}_2(\text{sample}, \text{upd.}16) - p\text{CO}_2(\text{sample}, \text{upd.}1)} \ge 0.5$

Stability criteria
(continued)Expired air samples:
Measurement on an expired air sample is accepted if the following criterion is
fulfilled:
 $|pCO_2 (sample,upd.30) - pCO_2 (sample,upd.24)| \le 0.40 \text{ kPa } (3.0 \text{ mmHg})$
or
 $|pCO_2 (sample,upd.30) - pCO_2 (sample,upd.24)| \le 0.04 \times pCO_2 (sample,upd.30).$ Error message "Measurement unstable" (= pCO_2 response fault during electrode

Error message "Measurement unstable" (= pCO_2 response fault during electrode monitoring in Expired air mode) is displayed if the stability criterion is not fulfilled.

Electrolyte electrodes

Description

The K electrode (E722) is an ionselective electrode whose sensing element is a PVC membrane containing a potassium-neutral ion carrier. The ionsensitive membrane is covered with a cellophane membrane in order to protect it from the samples.

The electrolyte has a constant and known concentration of potassium ions. When a sample is brought in contact with the electrode, a potential develops across the PVC and cellophane membranes. The potential depends on the difference between the potassium (more precisely, activity) in the electrolyte and the sample. If the cK^+ in both solutions is the same, the potential across the electrode tip will be 0 V.

The Na electrode (E755) is an ionselective electrode whose sensing element is a Na⁺-sensitive ceramic pin contained in the tip of the jacket.

The electrolyte has a constant and known concentration of sodium ions. When a sample is brought in contact with the electrode, a potential develops across the ceramic pin. The potential depends on the difference between the sodium (more precisely, activity) in the electrolyte and the sample. If the cNa^+ in both solutions is the same, the potential across the electrode tip will be 0 V.

The Ca electrode (E733) is an ionselective electrode whose sensing element is a PVC membrane containing a calcium-neutral ion carrier. The ionsensitive membrane is covered with a cellophane membrane in order to protect it from the samples.

The electrolyte has a constant and known concentration of calcium ions. When a sample is brought in contact with the electrode, a potential develops across the PVC and cellophane membranes. The potential depends on the difference between the calcium (more precisely, activity) in the electrolyte and the sample. If the cCa^{2+} in both solutions is the same, the potential across the electrode tip will be 0 V.

The Cl electrode (E744) is an ionselective electrode whose sensing element is a PVC membrane containing a chloride ion carrier. The ion-sensitive membrane is covered with a cellophane membrane in order to protect it from the samples.

The electrolyte has a constant and known concentration of chloride ions. When a sample is brought in contact with the electrode, a potential develops across the PVC and cellophane membranes. The potential depends on the difference between the chloride (more precisely, activity) in the electrolyte and the sample. If the cCI^- in both solutions is the same, the potential across the electrode tip will be 0 V.

Electrode chain potential

The total potential across the electrode chain is a sum of the potential differences at each of the elements in the chain, all but one of which is known and constant.

Element	Potential	Symbol
Ag/AgCl electrode /electrolyte solution. (Reference electrode)	Known and constant when the Ag/AgCl wire is immersed in the electrolyte solution.	$E_{ m ref}$
Membrane junction between the electrolyte solution in the reference electrode and the sample.	Known and constant, independent of sample composition.	$E_{ m MJ}$
Ion-sensitive membrane (or pin) junction separating the sample and the electrode.	Unknown , dependent on sample composition.	E_{Sample}
Ag/AgCl electrode/inner buffer solution. (Electrolyte electrode)	Known and constant when the Ag/AgCl wire is immersed in the electrolyte solution.	$E_{ m E}$
Total potential.	Measured by the voltmeter.	$E_{ m tot}$

The unknown potential difference across the ion-sensitive membrane or pin is then the difference between the measured total potential and the sum of the known potentials:

$$E_{\text{Sample}} = E_{\text{tot}} - (E_{\text{ref}} + E_{\text{MJ}} + E_{\text{E}}) \qquad \text{mV}$$

Nernst equation The potential difference at the membrane (or pin) in the electrolyte electrodes can be expressed by the Nernst equation:

$$E_{\text{Sample}} = E_0 + \frac{2.3\text{R}T}{n\text{F}} \times \log a_{\text{ion}} \qquad \text{mV}$$

where:

E_0	=	standard electrode potential
R	=	gas constant (8.3143 $J \times K^{-1} \text{mol}^{-1}$)
Т	=	absolute temperature (310.15 K at 37 °C)
n	=	charge on the ion (n = 1 for K^+ and Na^+ , n = -1 for Cl^- , n = 2 for Ca^{2+})
F	=	Faraday constant (96487 coulomb \times mol ⁻¹)
$a_{\rm ion}$	=	activity of the specific ion

solution values cK^* 4.0 mmol/L cNa^* 145 mmol/L cCI^- 102 mmol/L cCI^- 102 mmol/L cCI^- 102 mmol/L cCI^- 102 mmol/L cCI^- 50 mmol/L cCa^{2*} 5.0 mmol/L cCI^- 50 mmol/L cOI^- 50 mmol/L $cOI^ cI$ CI^- 50 mmol/L $cOI^ cI$ $CI^ cI$ $CI^ cI$ CI </th <th>Calibration</th> <th>Cal 1 solution S1720 has</th> <th>s the</th> <th>following nominal electrolyte concentrations:</th>	Calibration	Cal 1 solution S1720 has	s the	following nominal electrolyte concentrations:		
$\begin{array}{cccc} \mathrm{Na}^{*} & 145 \mathrm{mmol/L} \\ \mathrm{cCa}^{2^{*}} & 1.25 \mathrm{mmol/L} \\ \mathrm{cCI}^{-} & 102 \mathrm{mmol/L} \end{array}$ $\begin{array}{ccccc} \mathrm{Cal}^{2^{*}} & 1.25 \mathrm{mmol/L} \\ \mathrm{cCl}^{-} & 102 \mathrm{mmol/L} \end{array}$ $\begin{array}{cccccccccccccccccccccccccccccccccccc$	solution values		cК	+ 4.0 mmol/L		
$\begin{array}{c} c \operatorname{Ca}^{2^{+}} 1.25 \operatorname{mmol/L} \\ c \operatorname{CI}^{-} 102 \operatorname{mmol/L} \end{array}$ Cal 2 solution S1730 has the following nominal electrolyte concentrations: $\begin{array}{c} c \operatorname{K}^{+} & 40.0 \operatorname{mmol/L} \\ c \operatorname{Na}^{+} & 20.0 \operatorname{mmol/L} \\ c \operatorname{Ca}^{2^{+}} & 5.0 \operatorname{mmol/L} \\ c \operatorname{Ci}^{-} & 50 \operatorname{mmol/L} \end{array}$ The precise concentration of each electrolyte ion is contained in the solution's l codes. Designations The following designations are used (X = K/Na/Ca/Cl): E(X,Cal1) = Potential of the respective electrolyte electrode chain from a calibration on Cal 1 solution E(X,Cal2) = Potential of the respective electrolyte electrode chain from a calibration on Cal 2 solution 61.5 = Theoretical sensitivity of the K and Na electrodes 37 °C 30.75 = Theoretical sensitivity of the Ca electrode at 37 °C -61.5 = Theoretical sensitivity of the Ca electrode at 37 °C cX(Cal1) = Concentration of the respective electrolyte ion in Cal 1 solution E_0(X,Cal1) = Standard potential of the respective electrolyte ion in Cal 2 solution E_0(X,Cal1) = Nominal concentration of the respective electrolyte ion in Cal 2 solution			cN	a ⁺ 145 mmol/L		
CICal 2 solution S1730 has the following nominal electrolyte concentrations: cK^+ 40.0 mmol/L cNa^+ 20.0 mmol/L cCa^{2+} 5.0 mmol/L cCl^- 50 mmol/LCCl^-50 mmol/LThe precise concentration of each electrolyte ion is contained in the solution's lcodes.DesignationsThe following designations are used (X = K/Na/Ca/Cl):E(X,Cal1)=Potential of the respective electrolyte electrode chain from a calibration on Cal 1 solutionE(X,Cal2)=Potential of the respective electrolyte electrode chain from a calibration on Cal 2 solution61.5=Theoretical sensitivity of the K and Na electrodes 37 °C30.75=Theoretical sensitivity of the Cl electrode at 37 °C-61.5=Concentration of the respective electrolyte ion in Cal 1 solution $cX(Cal1)$ =Concentration of the respective electrolyte ion in Cal 2 solution $cX(Cal2)$ =Concentration of the respective electrolyte ion in Cal 2 solution $cX(Cal1)$ =Standard potential of the respective electrolyte electrode chain			cС	a ²⁺ 1.25 mmol/L		
Cal 2 solution \$1730 has the following nominal electrolyte concentrations: cK^+ 40.0 mmol/L cNa^+ 20.0 mmol/L cCa^{2+} 5.0 mmol/L cCI^- 50 mmol/L cCI^- 50 mmol/LThe precise concentration of each electrolyte ion is contained in the solution's lcodes.The following designations are used (X = K/Na/Ca/Cl):E(X,Cal1)=Potential of the respective electrolyte electrode chain from a calibration on Cal 1 solutionE(X,Cal2)=Potential of the respective electrolyte electrode chain from a calibration on Cal 2 solution61.5=30.75=Theoretical sensitivity of the K and Na electrodes 37 °C30.75=Theoretical sensitivity of the Cl electrode at 37 °C-61.5=Current and the respective electrolyte ion in Cal 1 solutioncX (Cal1)=Concentration of the respective electrolyte ion in Cal 2 solutioncX (Cal1, nom)=Nominal concentration of the respective electrolyte electrole chain			сC	⁻ 102 mmol/L		
$cK^{+} = 40.0 \text{ mmol/L}$ $cNa^{+} = 20.0 \text{ mmol/L}$ $cCa^{2+} = 5.0 \text{ mmol/L}$ $cCI^{-} = 50 \text{ mmol/L}$ The precise concentration of each electrolyte ion is contained in the solution's l codes. Designations The following designations are used (X = K/Na/Ca/Cl): E(X, Cal1) = Potential of the respective electrolyte electrode chain from a calibration on Cal 1 solution $E(X, Cal2) = Potential of the respective electrolyte electrode chain from a calibration on Cal 2 solution$ $61.5 = Theoretical sensitivity of the K and Na electrodes 37 °C$ $30.75 = Theoretical sensitivity of the Cl electrode at 37 °C$ $-61.5 = Theoretical sensitivity of the Cl electrolyte ion in Cal 1 solution$ $cX (Cal2) = Concentration of the respective electrolyte ion in Cal 2 solution$		Cal 2 solution S1730 has	s the	following nominal electrolyte concentrations:		
$cNa^{+} 20.0 \text{ mmol/L}$ $cCa^{2+} 5.0 \text{ mmol/L}$ $cCI^{-} 50 \text{ mmol/L}$ The precise concentration of each electrolyte ion is contained in the solution's l codes. Designations The following designations are used (X = K/Na/Ca/Cl): $E(X,Cal1) = Potential of the respective electrolyte electrode chain from a calibration on Cal 1 solution$ $E(X,Cal2) = Potential of the respective electrolyte electrode chain from a calibration on Cal 2 solution$ $61.5 = Theoretical sensitivity of the K and Na electrodes 37 °C$ $30.75 = Theoretical sensitivity of the Ca electrode at 37 °C$ $-61.5 = Theoretical sensitivity of the Cl electrode at 37 °C$ $cX (Cal1) = Concentration of the respective electrolyte ion in Cal 1 solution$ $E_0(X,Cal1) = Standard potential of the respective electrolyte electrolyte electrolyte electrolyte ion in Cal 2 solution$			cК	+ 40.0 mmol/L		
$cCa^{2+} 5.0 \text{ mmol/L}$ $cCr 50 \text{ mmol/L}$ The precise concentration of each electrolyte ion is contained in the solution's l codes. Designations The following designations are used (X = K/Na/Ca/Cl):E(X,Cal1)=Potential of the respective electrolyte electrode chain from a calibration on Cal 1 solutionE(X,Cal2)=Potential of the respective electrolyte electrode chain from a calibration on Cal 2 solution61.5=Theoretical sensitivity of the K and Na electrodes 37 °C30.75=Theoretical sensitivity of the Cl electrode at 37 °C -61.530.75=Theoretical sensitivity of the Cl electrode at 37 °C cX (Cal1)Cal 1 solutionCal 1 solutionCal 2 solutionEquation cal 2 solutionEquationEquationEquationEquationCal 1 solutionEquationCal 2 solutionEquation cal 2 solutionEquationEquationCal 1 solutionEquationCal 2 solutionEquationEquationEquationCal 2 solutionEquationCal 2 solutionEquationEquationEquationCal 1 solutionEquationCal 1 solutionEquationCal 2 solutionEquationEquationEquationCal 1 solutionEquationCal 1 solutionEquationCal 1 solutionEquationEquationEquationEquationEquationEquation <td></td> <td></td> <td>сN</td> <td>a⁺ 20.0 mmol/L</td>			сN	a ⁺ 20.0 mmol/L		
$cCI^- 50 \text{ mmol/L}$ The precise concentration of each electrolyte ion is contained in the solution's locdes.DesignationsThe following designations are used (X = K/Na/Ca/Cl): $E(X,Cal1)$ =Potential of the respective electrolyte electrode chain from a calibration on Cal 1 solution $E(X,Cal2)$ =Potential of the respective electrolyte electrode chain from a calibration on Cal 2 solution 61.5 =Theoretical sensitivity of the K and Na electrodes $37 ^{\circ}C$ 30.75 =Theoretical sensitivity of the Ca electrode at $37 ^{\circ}C$ 30.75 =Theoretical sensitivity of the Cl electrode at $37 ^{\circ}C$ $CX(Cal1)$ =Concentration of the respective electrolyte ion in Cal 1 solution $cX(Cal2)$ =Standard potential of the respective electrolyte ion in Cal 2 solution $E_0(X,Cal1)$ =Standard potential of the respective electrolyte ion in Cal 2 solution $cX(Cal1,nom)$ =Nominal concentration of the respective electrolyte ion in Cal 1 solution			cС	a ²⁺ 5.0 mmol/L		
The precise concentration of each electrolyte ion is contained in the solution's l codes.DesignationsThe following designations are used $(X = K/Na/Ca/Cl)$: $E(X,Cal1)$ =Potential of the respective electrolyte electrode chain from a calibration on Cal 1 solution $E(X,Cal2)$ =Potential of the respective electrolyte electrode chain from a calibration on Cal 2 solution 61.5 =Theoretical sensitivity of the K and Na electrodes 37 °C 30.75 =Theoretical sensitivity of the Ca electrode at 37 °C -61.5 -61.5 =Theoretical sensitivity of the Cl electrode at 37 °C cX (Cal1) $cX(Cal2)$ =Concentration of the respective electrolyte ion in Cal 1 solution $cX(Cal2)$ =Standard potential of the respective electrolyte electrolyte electrolyte electrolyte electrolyte electrolyte $cX(Cal1,nom)$ =Nominal concentration of the respective electrolyte electrolyte			сC	⁻ 50 mmol/L		
DesignationsThe following designations are used (X = K/Na/Ca/Cl): $E(X,Cal1)$ =Potential of the respective electrolyte electrode chain from a calibration on Cal 1 solution $E(X,Cal2)$ =Potential of the respective electrolyte electrode chain from a calibration on Cal 2 solution 61.5 =Theoretical sensitivity of the K and Na electrodes 37 °C 30.75 =Theoretical sensitivity of the Ca electrode at 37 °C -61.5 -61.5 =Theoretical sensitivity of the Cl electrode at 37 °C C x(Cal1) $cX(Cal2)$ =Concentration of the respective electrolyte ion in Cal 1 solution $E_0(X,Cal1)$ =Standard potential of the respective electrolyte electrode chain $cX(Cal1,nom)$ =Nominal concentration of the respective electrolyte electrolyte on in Cal 1 solution		The precise concentration codes.	on of	each electrolyte ion is contained in the solution's bar		
$E(X,Cal1)$ =Potential of the respective electrolyte electrode chain from a calibration on Cal 1 solution $E(X,Cal2)$ =Potential of the respective electrolyte electrode chain from a calibration on Cal 2 solution 61.5 =Theoretical sensitivity of the K and Na electrodes $37 ^{\circ}C$ 30.75 =Theoretical sensitivity of the Ca electrode at $37 ^{\circ}C$ -61.5 =Theoretical sensitivity of the Cl electrode at $37 ^{\circ}C$ cX (Cal1)=Concentration of the respective electrolyte ion in Cal 1 solution cX (Cal2)=Concentration of the respective electrolyte ion in Cal 2 solution $E_0(X,Cal1)$ =Standard potential of the respective electrolyte electrode chain cX (Cal1,nom)=Nominal concentration of the respective electrolyte electrolytic on in Cal 1 solution	Designations	The following designations are used ($X = K/Na/Ca/Cl$):				
$E(X,Cal2)$ =Potential of the respective electrolyte electrode chain from a calibration on Cal 2 solution 61.5 =Theoretical sensitivity of the K and Na electrodes $37 ^{\circ}C$ 30.75 =Theoretical sensitivity of the Ca electrode at $37 ^{\circ}C$ -61.5 =Theoretical sensitivity of the Cl electrode at $37 ^{\circ}C$ $cX(Cal1)$ =Concentration of the respective electrolyte ion in Cal 1 solution $cX(Cal2)$ =Concentration of the respective electrolyte ion in Cal 2 solution $E_0(X,Cal1)$ =Standard potential of the respective electrolyte electrolyte electrode chain $cX(Cal1,nom)$ =Nominal concentration of the respective electrolyte electrolyte on in Cal 1 solution		E(X,Cal1)	=	Potential of the respective electrolyte electrode chain from a calibration on Cal 1 solution		
61.5 =Theoretical sensitivity of the K and Na electrodes $37 ^{\circ}C$ 30.75 =Theoretical sensitivity of the Ca electrode at $37 ^{\circ}C$ -61.5 =Theoretical sensitivity of the Cl electrode at $37 ^{\circ}C$ cX (Cal1)=Concentration of the respective electrolyte ion in Cal 1 solution cX (Cal2)=Concentration of the respective electrolyte ion in Cal 2 solution $E_0(X, Cal1)$ =Standard potential of the respective electrolyte electrode chain cX (Cal1,nom)=Nominal concentration of the respective electrolyte electrolyton		E(X,Cal2)	=	Potential of the respective electrolyte electrode chain from a calibration on Cal 2 solution		
30.75 =Theoretical sensitivity of the Ca electrode at $37 ^{\circ}$ C -61.5 =Theoretical sensitivity of the Cl electrode at $37 ^{\circ}$ C cX (Cal1)=Concentration of the respective electrolyte ion in Cal 1 solution cX (Cal2)=Concentration of the respective electrolyte ion in Cal 2 solution $E_0(X,Cal1)$ =Standard potential of the respective electrolyte electrode chain cX (Cal1,nom)=Nominal concentration of the respective electroly electroly ion in Cal 1 solution		61.5	=	Theoretical sensitivity of the K and Na electrodes at 37 $^{\rm o}\mathrm{C}$		
-61.5 =Theoretical sensitivity of the Cl electrode at 37 °C cX (Cal1)=Concentration of the respective electrolyte ion in Cal 1 solution cX (Cal2)=Concentration of the respective electrolyte ion in Cal 2 solution $E_0(X,Cal1)$ =Standard potential of the respective electrolyte electrode chain cX (Cal1,nom)=Nominal concentration of the respective electroly ion in Cal 1 solution		30.75	=	Theoretical sensitivity of the Ca electrode at 37 $^{\rm o}{\rm C}$		
cX (Cal1)=Concentration of the respective electrolyte ion in Cal 1 solution cX (Cal2)=Concentration of the respective electrolyte ion in Cal 2 solution $E_0(X,Cal1)$ =Standard potential of the respective electrolyte electrode chain cX (Cal1,nom)=Nominal concentration of the respective electroly ion in Cal 1 solution		-61.5	=	Theoretical sensitivity of the Cl electrode at 37 $^{\circ}\mathrm{C}$		
cX (Cal2)=Concentration of the respective electrolyte ion in Cal 2 solution $E_0(X,Cal1)$ =Standard potential of the respective electrolyte electrode chain cX (Cal1,nom)=Nominal concentration of the respective electroly ion in Cal 1 solution		cX(Cal1)	=	Concentration of the respective electrolyte ion in Cal 1 solution		
E_0(X,Cal1)=Standard potential of the respective electrolyte electrode chaincX (Cal1,nom)=Nominal concentration of the respective electroly ion in Cal 1 solution		cX (Cal2)	=	Concentration of the respective electrolyte ion in Cal 2 solution		
cX (Cal1,nom) = Nominal concentration of the respective electroly ion in Cal 1 solution		$E_0(X,Cal1)$	=	Standard potential of the respective electrolyte electrode chain		
		<i>c</i> X(Cal1,nom)	=	Nominal concentration of the respective electrolyte ion in Cal 1 solution		

- E(X,Cal 1,prev) = Potential of the respective electrolyte electrode chain from the previous calibration on Cal 1 solution
- Sens(X,Cal2,prev) = Sensitivity of the respective electrolyte electrode from the last 2-point calibration Concentration of the respective electrolyte ion in

Concentration of the respective electrolyte ion in Cal 1 solution in the previous calibration

Sensitivity The sensitivity of the electrolyte electrodes is calculated from the following equations:

K electrode

$$\operatorname{Sens}(\mathbf{K}) = \frac{\operatorname{E}(\mathbf{K}, \operatorname{Cal1}) - \operatorname{E}(\mathbf{K}, \operatorname{Cal2})}{61.5 \times \log \frac{c \operatorname{K}^+(\operatorname{Cal1})}{c \operatorname{K}^+(\operatorname{Cal2})}}$$
(fraction)

Na electrode

$$\operatorname{Sens}(\operatorname{Na}) = \frac{\operatorname{E}(\operatorname{Na}, \operatorname{Cal1}) - \operatorname{E}(\operatorname{Na}, \operatorname{Cal2})}{61.5 \times \log \frac{c\operatorname{Na}^+(\operatorname{Cal1})}{c\operatorname{Na}^+(\operatorname{Cal2})}}$$
(fraction)

Ca electrode

$$\operatorname{Sens}(\operatorname{Ca}) = \frac{\operatorname{E}(\operatorname{Ca}, \operatorname{Cal1}) - \operatorname{E}(\operatorname{Ca}, \operatorname{Cal2})}{30.75 \times \log \frac{c \operatorname{Ca}^{2+}(\operatorname{Cal1})}{c \operatorname{Ca}^{2+}(\operatorname{Cal2})}}$$
(fraction)

Cl electrode

$$\operatorname{Sens}(\operatorname{Cl}) = \frac{\operatorname{E}(\operatorname{Cl}, \operatorname{Cal1}) - \operatorname{E}(\operatorname{Cl}, \operatorname{Cal2})}{-61.5 \times \log \frac{c \operatorname{Cl}^{-}(\operatorname{Cal1})}{c \operatorname{Cl}^{-}(\operatorname{Cal2})}}$$
(fraction)

The sensitivity limits of the electrolyte electrodes are as follows:

Electrode	Sensitivity Limits
K	92 - 105 %
Na	90 - 105 %
Ca	90 - 105 %
Cl	85 - 105 %

Status The status of each of the electrolyte electrode is calculated from the following equations:

K electrode

$$Status(K) = \frac{10^{\frac{E(K,Cal1)-E_0(K,Cal1)}{61.5}} \times cK^+(Cal1,nom)^2}{cK^+(Cal1)} \text{ mmol/L}$$

Na electrode

 $\operatorname{Status}(\operatorname{Na}) = \frac{10^{\frac{\operatorname{E(Na,Cal1)} - \operatorname{E}_0(\operatorname{Na,Cal1})}{61.5}} \times c\operatorname{Na^+(Cal1,\operatorname{nom})^2}}{c\operatorname{Na^+(Cal1)}} \operatorname{mmol/L}$

Status Ca electrode (continued)

Status(Ca) =
$$\frac{10^{\frac{E(Ca,Cal1)-E_0(Ca,Cal1)}{30.75}} \times cCa^{2+}(Cal1,nom)^2}{cCa^{2+}(Cal1)}$$
 mmol/L

Cl electrode

$$Status(Cl) = \frac{10^{\frac{E(Cl,Cal1) - E_0(Cl,Cal1)}{-61.5}} \times cCl^{-}(Cal1, nom)^2}{cCl^{-}(Cal1)} mmol/L$$

The status	limits of	of the	electrol	lyte	electrodes	are a	as follows:

Electrode	Status Limits
K	0.5 - 12 mmol/L
Na	10 - 250 mmol/L
Ca	0.1 - 20 mmol/L
Cl	30 - 900 mmol/L

Drift Drift equations are given below.

K electrode

 $Drift 1(K) = 10^{\frac{E(K,Cal1)-E(K,Cal1,prev)}{61.5\times Sens(K,prev)}} \times cK^{+}(Cal1, prev) - cK^{+}(Cal1) \text{ mmol/L}$ $Drift 2(K) = 10^{\frac{E(K,Cal2)-E(K,Cal1,prev)}{61.5\times Sens(K,prev)}} \times cK^{+}(Cal1, prev) - cK^{+}(Cal2) \text{ mmol/L}$

Na electrode

 $\frac{\text{Drift 1(Na)}=10}{\text{Drift 2(Na)}=10} \frac{\frac{\text{E(Na,Call,prev)}}{61.5\times\text{Sens(Na,prev)}}}{\frac{\text{E(Na,Call)}-\text{E(Na,Call,prev)}}{61.5\times\text{Sens(Na,prev)}}} \times c\text{Na}^{+}(\text{Call,prev})-c\text{Na}^{+}(\text{Call}) \text{ mmol/L}}$

Ca electrode

Drift 1(Ca)=10 $\frac{\frac{E(Ca,Cal1)-E(Ca,Cal1,prev)}{30.75\times Sens(Ca,prev)}}{\frac{E(Ca,Cal2)-E(Ca,Cal2)-E(Ca,Cal2,prev)}{30.75\times Sens(Ca,prev)}} \times cCa^{2+} (Cal1, prev) - cCa^{2+} (Cal2) \text{ mmol/L}$ Drift 2(Ca)=10 $\frac{E(Ca,Cal2)-E(Ca,Cal2,prev)}{30.75\times Sens(Ca,prev)} \times cCa^{2+} (Cal1, prev) - cCa^{2+} (Cal2) \text{ mmol/L}$

Drift (continued) <u>Cl electrode</u>

 $\frac{E(Cl,Cal1)-E(Cl,Cal1,prev)}{-cl.5\timesSens(Cl,prev)} \times cCl^{-}(Cal1,prev) - cCl^{-}(Cal1) \text{ mmol/L}$ $\frac{E(Cl,Cal2)-E(Cl,Cal1,prev)}{-cl.5\timesSens(Cl,prev)} \times cCl^{-}(Cal1,prev) - cCl^{-}(Cal2) \text{ mmol/L}$

NOTE: If Cal 1 solution bottle has not been changed between two consecutive calibrations, the cX(Cal1, prev) - cX(Cal1) = 0, where X is the respective electrolyte ion.

The default drift tolerances set by Radiometer are as follows:

Electrode	Drift 1 Tolerances	Drift 2 Tolerances	
K	$\pm 0.2 \text{ mmol/L}$	\pm 1.5 mmol/L	
Na	± 3 mmol/L	± 1 mmol/L	
Ca	$\pm 0.05 \text{ mmol/L}$	$\pm 0.2 \text{ mmol/L}$	
Cl	$\pm 2 \text{ mmol/L}$	\pm 3 mmol/L	

Measurement The electrolyte concentration in a sample is calculated from the following equation:

 $cX(\text{sample})=cX(\text{Cal1})\times 10^{\frac{E(X,\text{sample})-E(X,\text{Cal,prev})}{\text{Sens(theo)}\times \text{Sens(X,prev})}}$

where:

E(X,sample) =	Potential of the electrolyte electrode chain from a measurement on the sample.
E(X,Cal,prev) =	Potential of the electrolyte electrode chain from the previous calibration on Cal 1 solution.
cX(Cal 1) =	Specific (true) concentration of the electrolyte ion in Cal 1 solution.
Sens (theo) =	Theoretical sensitivity of the electrolyte electrode.
Sens(X,prev) =	Relative sensitivity of the electrolyte electrode chain from the last 2-point calibration.

Corrections The measured electrolyte concentration is then corrected for systematic deviations from the reference method by the following equations:

Equation A:

 $cX(\text{sample}, \text{corr})_{195\mu L} = A_{0(195\mu L)} \times cX(\text{sample}) + A_{1(195\mu L)}$

and

Equation B:

 $cX(\text{sample,corr,micromode}) = A_0(\text{micromode})_{195 \ \mu\text{L}} \times cX(\text{sample,corr}) + A_1(\text{micromode})$

where:

<i>c</i> X(sample)	= uncorrected value of the electrolyte ion in the sample
<i>c</i> X(sample,corr)	= corrected value of the electrolyte ion in the sample
A_0	= instrument-dependent correction factor
A_1	= instrument-dependent correction cut-off

Chloride is corrected for $c\text{HCO}_3^-$ interference. The default value $c\text{HCO}_3^- = 24.5$ mmol/L is used in

Equation C:

 $c\text{Cl}^{-}(\text{samplecorr})_{195\mu} = A_{0(195\mu)} \times (c\text{Cl}^{-}(\text{sample}) - 0.0956 \times c\text{HCO}_{3}^{-}) + A_{1(195\mu)}$

Note that subscript "195 μ L" in the equations above is used for convenience sake and stands for "FLEXMODE (no message)" and "FLEXMODE (message 874)".

Corrections for *c***Na**⁺ **:**

ABL8XX FLEX	Mode	\mathbf{A}_{0}	A_1	Equation
35/25/15	S195	0.995	-3.00	А
	S95	1.01	1.80	A, B
	C95	1.03	-1.09	A, B
	*FM (no message)	0.995	-3.00	А
	*FM (message 874)	1.030	-1.00	A, B

*FM = FLEXMODE.

Corrections

Corrections for *c***Na**⁺ (cont):

(continued)

ABL8XX FLEX	Mode	\mathbf{A}_{0}	$\mathbf{A_1}$	Equation
05	S165	0.995	-3.00	А
	S95	1.01	1.80	A, B
	C95	1.03	-1.09	A, B
	*FM (no message)	0.995	-3.00	А
	*FM (message 874)	1.030	-1.00	A, B

*FM = FLEXMODE.

Corrections for *c***K**⁺ **:**

ABL8XX FLEX	Mode	\mathbf{A}_{0}	\mathbf{A}_{1}	Equation
35/25/15	S195	0.985	-0.065	А
	S95	1.05	-0.13	A, B
	C95	1.11	-0.37	A, B
	*FM (no message)	0.985	-0.065	А
	*FM (message 874)	1.11	-0.37	A, B
05	S165	0.985	-0.065	А
	S95	1.05	-0.13	A, B
	C95	1.11	-0.37	A, B
	*FM (no message)	0.985	-0.065	А
	*FM (message 874)	1.11	-0.37	A, B

*FM = FLEXMODE.

Corrections

Corrections for cCa	²⁺ :
---------------------	-----------------

ABL8XX FLEX	Mode	\mathbf{A}_{0}	A ₁	Equation
35/25/15	S195	1.004	-0.022	А
	S95	1.05	-0.004	A, B
	C95	1.08	-0.04	A, B
	*FM (no message)	1.004	-0.022	А
	*FM (message 874)	1.08	-0.04	A, B
05	S165	1.004	-0.022	А
	S95	1.05	-0.004	A, B
	C95	1.08	-0.04	A, B
	*FM (no message)	1.004	-0.022	А
	*FM (message 874)	1.08	-0.04	A, B

*FM = FLEXMODE.

Corrections for *c*Cl⁻:

ABL8XX FLEX	Mode	A ₀	A ₁	Equation
35/25/15	S195	1.225	-30.7	С
	S95	1.000	0.0	С, В
	C95	1.01	-1.7	С, В
	*FM (no message)	1.225	-30.7	С
	*FM (message 874)	1.01	-1.7	С, В
05	S165	1.225	-30.7	С
	S95	1.000	0.0	C, B
	C95	1.01	-1.7	С, В
	*FM (no message)	1.225	-30.7	С
	*FM (message 874)	1.01	-1.7	C, B

*FM = FLEXMODE.
Electrolyte electrodes, Continued

Stability criteria The following stability criterion must be met to obtain a stable electrode response during calibration:

 $|cX(Cal, upd.last) - cX(Cal, upd.i)| \le K \times cX(Cal, upd.last)$

This criterion is valid for calibrations using Cal 1 and Cal 2 solutions where:

- cX(Cal,upd.last) = Concentration of the electrolyte ion from the last updating when measuring on calibration solution. (The last updating is number 30).
- cX(Cal,upd.i) = Concentration of the electrolyte ion for a given updating when measuring on calibration solution. (The relationship must be fulfilled for at least one of the updating numbers 18 or 19).

Constant for the stability criterion.

Electrolyte Ion	Cal1 solution	Cal2 solution
\mathbf{K}^+	0.01	0.01
Na^+	0.01	0.02
Ca ²⁺	0.02	0.02
Cl^-	0.022	0.022

The following stability criterion must be met to obtain a stable electrode response during measurement:

 $|cX(\text{sample}, \text{upd.last}) - cX(\text{sample}, \text{upd.i})| \le$

 $K \times (|cX(sample, upd.last) - cX(Rinse)| + cX(Rinse))$

where:

<i>c</i> X(sample,upd.last) =	Concentration of the electrolyte ion from the median of the last 5 updatings (for Ca^{2+} : 3 last updatings) when measuring on a sample. The last updating number is 30 (or 10 for some micromodes).				
<i>c</i> X(sample,upd.i) =	Concentration of the electrolyte ion for a given updating when measuring on a sample. (The relationship must be fulfilled for at least one of the updating numbers shown below).			a given The one of the	
	\mathbf{K}^+	Na^+	Ca ²⁺	Cl ⁻	
	22	22	26	22	
	23	23	27	23	
	In some m above.	nicromodes	, substract	20 from	number

Electrolyte electrodes, Continued

Stability criteria (continued)	К	Constant for the stability criterion; it equals to:
		$K^{+} = 0.012; Na^{+} = 0.012; Ca^{2+} = 0.022; Cl^{-} = 0.012$
	cX _{Rinse}	Constant used indicates the concentration of the electrolyte ion level in rinse solution:
		$K^+ = 4.0; Na^+ = 130.0; Ca^{2+} = 1.25; Cl^- = 137.7$

References

List of
referencesLinnet N. pH measurements in theory and practice. 1st ed. Copenhagen:
Radiometer Medical A/S, 1970.

2. Amperometric measuring principles

Overview

perometric measuring principles and the pO_2 and based on this principle.	ł
wing topics.	
	2-2
	2-4
	2-12
	perometric measuring principles and the pO_2 and based on this principle. wing topics.

General information

Amperometric The magnitude of an electrical current flowing through an electrode chain, which is in turn proportional to the concentration of the substance being oxidized or reduced at an electrode in the chain

The electrode chain in amperometric measurements consists of the sample, the two electrodes (anode and cathode), an amperemeter, a voltage source, the membranes, and the electrolyte solutions.

Part	Function
Cathode	Negative electrode where a reduction reaction occurs and electrons are consumed.
Anode	Positive electrode where an oxidation reaction occurs and electrons are released.
Electrolyte solution	Provides electrical contact between the anode and cathode.
Membrane	Allows the appropriate molecules to pass through from the sample.
Sample	Contacts the membrane.
Applied voltage	Applies the necessary potential for the reduction or oxidation reaction under study.
Amperemeter	Measures the current flowing through the circuit.

To simplify the description of the measuring process in an amperometric electrode, we make the following assumptions:

- there is a species A in the sample which is reduced at the cathode to A⁻.
- there is a species **X** in the electrolyte which is oxidized at the anode to **X**⁺.

General information, Continued

Amperometric method	The membrane is selective to the species \mathbf{A} , allowing no other species but it to pass through from the sample into the electrolyte solution.					
(continued)	As an appropriate potential is applied across the electrodes, the species A is reduced at the cathode according to the following reaction:					
	$A + e^- \rightarrow A^-$					
	The reduction of A produces a flow of electrons, i.e. an electrons i.e. and electrons i.e. and electrons i.e. and electrons i.e. and electrons is a statement of the statement o	etrical current.				
	To complete the electrical circuit an oxidation reaction whe released is necessary. Therefore species \mathbf{X} is oxidized accorreaction:	re electrons are rding to the following				
	$X \rightarrow X^{+} + e^{-}$					
	The magnitude of the current flowing through the circuit is proportional to the concentration of the species being reduced, in this case species A . The analyzer thereby automatically calculates the concentration of A in the sample.					
	The amperometric measuring principle is applied in the pO_2 electrodes.	2, glucose and lactate				
Calibration	The electrodes are active elements and must be calibrated regularly as the signals from the electrodes change with, e.g. age or deposits on the membrane.					
	Calibration relates the electrode signals during the calibration sequence to the values of the calibrating solutions and must be performed at regular intervals so that the accuracy can be constantly refined after inevitable minor changes in the electrodes' behavior.					
	Actual electrode condition is described by zero point and se with theoretical conditions for an "ideal" electrode. In addit sensitivity, an electrode condition is described by drift.	ensitivity and compared ion to zero point and				
Calibration	The following calibration materials are used:					
material	Gas 1 and Gas 2: each gas has a precise composition essential for determining the accuracy of the analyzer in each pO_2 measurement.	Calibration of the pO_2 electrode				
	Calibration Solution 1	Calibration of the metabolite electrodes				

pO₂ electrode

Description

The pO_2 electrode is an amperometric electrode which consists of a silver anode, platinum cathode and Ag/AgCl reference band, all protected by an electrode jacket which is filled with electrolyte solution. At the tip of the electrode jacket an oxygen-permeable membrane protects the Pt cathode from protein contamination and is covered on the inner side with Pt-black.

The electrode chain is polarized with constant voltage of -630 mV.

Oxygen from the sample diffuses across the membrane into the electrolyte and is reduced on the cathode (electrons are consumed) according to the following equation:

 $O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$

The H⁺ ions come from the electrolyte solution.

This represents the complete reduction of O_2 . Some of the O_2 however is only partially reduced according to the following equation:

 $O_2 + 2H^+ + 2e^- \rightarrow H_2O_2$

In the presence of Pt- black, H_2O_2 produced by the incomplete reduction of O_2 at the cathode is immediately decomposed:

$$2H_2O_2 \ \rightarrow \ 2H_2O \ + \ O_2$$

This oxygen is then also reduced at the cathode. The reduction of oxygen produces a flow of electrons (an electrical current) the size of this current, I, proportional to the amount of oxygen and measured by the amperemeter:

$$I = \operatorname{Sens}(pO_2) \times pO_2 + I_0 \qquad pA$$

where:

$Sens(pO_2)$	=	Sensitivity of the pO_2 electrode
pO_2	=	Partial pressure of O ₂ in the sample
Io	=	Zero current i.e. the current flowing through the circuit when
		$pO_2 = 0 \text{ kPa (mmHg)}$

To complete the electrical circuit, an oxidation reaction where electrons are released is necessary. The reaction at the silver anode is the conversion of Ag to Ag^+ :

$$Ag \rightarrow Ag^{+} + e^{-}$$

In order to maintain a charge balance between the anode and cathode, 4 atoms of Ag need to be oxidized for one molecule of O_2 to be reduced.

pO2 electrode, Continued

Description (continued)	The Ag^+ ions are released into the electrolyte solution where they react with the Cl^- ions present, producing AgCl which is insoluble and forms a layer on the silver rod:					
	$Ag^+ + Cl^-$	$\rightarrow A$	gCl			
	Not all Ag+ they are con periodically	ions c vertec remov	can be removed from the solution. Some reach the cathode where I back to Ag and form a deposit of silver. This deposit must be ved with the brush provided in the electrode box.			
Designations	The following	ng des	ignations are used to describe sensitivity, zero point and drift:			
	I(O ₂ ,gas1)	=	Current recorded at the pO_2 electrode from a measurement on Gas 1			
	I(O ₂ ,gas2)	=	Current recorded at the pO_2 electrode from a measurement on Gas 2			
	$pO_2(gas1)$	=	Partial pressure of O ₂ in Gas 1			
	$pO_2(gas2)$	=	Partial pressure of O_2 in Gas 2			
	$FO_2(gas1)$	=	Fraction of O_2 in Gas 1			
	$FO_2(gas2)$	=	Fraction of O ₂ in Gas 2			
	В	=	Ambient pressure			
	pH_2O	=	Water vapor pressure = 6.2571 kPa at 37 °C.			
	Sens(<i>p</i> O ₂ , prev)	=	Sensitivity of the pO_2 electrode measured at the previous 2-point calibration			
	I(O ₂ ,gas2, prev)	=	Current recorded at the pO_2 electrode from the previous measurement on Gas 2			
Sensitivity	The pO_2 elements	ctrode	is calibrated on two gases with known O2 content.			
	a .					

Gas 1 contains 19.76 % O_2 and Gas 2 contains 0.0 % O_2 .

The exact composition of the calibration gases is contained in their bar codes.

The sensitivity of the pO_2 electrode, Sens(pO_2), is calculated as follows:

$$\operatorname{Sens}(pO_2) = \frac{\operatorname{I}(O_2, \operatorname{gas}1) - \operatorname{I}(O_2, \operatorname{gas}2)}{pO_2 (\operatorname{gas}1) - pO_2 (\operatorname{gas}2)} \operatorname{pA/kPa}$$

pO₂ electrode, Continued

SensitivityThe partial pressures of O_2 in the gas mixtures Gas 1 and Gas 2 are calculated from
the following equation:

$$pO_2(gas1) = FO_2(gas1) \times [B - pH_2O] kPa$$

 $pO_2(gas2) = FO_2(gas2) \times [B - pH_2O] kPa$

The sensitivity of the pO_2 electrode should fall between 5 - 40 pA/mmHg or 37.5 - 300 pA/kPa.

Zero point The zero point of the pO_2 electrode is the electrode current at $pO_2=0$. It is calculated from the current measured at the electrode with Gas 2 (0 % O_2), and the sensitivity:

$$\operatorname{Zero point}(pO_2) = \frac{I(O_2, gas2)}{\operatorname{Sens}(pO_2, prev)} kPa$$

The zero point value of the pO_2 electrode should be less than 6.0 mmHg or 0.80 kPa.

The zero point current is the current measured at the pO_2 electrode with Gas 2 in the measuring chamber. When the measurement on Gas 2 begins, a relatively high current is recorded due to residual O_2 from the rinse solution in the measuring chamber. This current falls exponentially with time while Gas 2 is present in the measuring chamber.

Forty seconds into the measurement the current reaches a steady state which is then considered as the zero point current.

Drift 1 is a measurement of the difference between two consecutive measurements on Gas 1, and is calculated from the following equation:

$$\text{Drift 1}(pO_2) = \frac{I(O_2, \text{gas1}) - I(O_2, \text{gas1}, \text{prev})}{\text{Sens}(pO_2, \text{prev})} - pO_2(\text{gas1})\text{kPa}$$

Drift 2 reflects the change in sensitivity between 2-point calibrations and is calculated from the following equation:

Drift 2(
$$pO_2$$
) = $\frac{I(O_2, gas2) - I(O_2, gas2, prev)}{Sens(pO_2, prev)} - pO_2(gas2)$ kPa

The default drift tolerances set by Radiometer are ± 0.80 kPa (6.0 mmHg) for Drift 1 and Drift 2. The Drift tolerances can, however, be user-defined in the Setup program.

Continued on next page

Drift

pO2 electrode, Continued

Measurement The pO_2 value for a sample is calculated from the following equations:

$$pO_2(\text{sample, upd.i}) = \frac{I(O_2, \text{sample, upd.i}) - I(O_2, \text{gas2, prev})}{\text{Sens}(pO_2)} \times K_1$$

Constant K_1 describes the gas/liquid relationship for the electrode. This constant is defined as:

$$\mathbf{K}_{1} = 1 + 0.01 \left(-5.8370 + \sqrt{21.712 + \frac{\text{Sens}(pO_{2})}{3.66294}} \right)$$

 $\delta = |pO_2(\text{sample}, \text{upd.}30) - pO_2(\text{sample}, \text{upd.}1)|$

predict =
$$\frac{pO_2(\text{sample, upd.6}) \times pO_2(\text{sample, upd.30}) - (pO_2(\text{sample, upd.18}))^2}{pO_2(\text{sample, upd.6}) + pO_2(\text{sample, upd.30}) - 2 \times pO_2(\text{sample, upd.18})}$$

where:

I(O ₂ ,sample,updi) =	Current recorded at the pO_2 electrode from updating number <i>i</i> with a measurement on the sample.
I(O ₂ ,gas2,prev) =	Current recorded at the pO_2 electrode from the previous measurement on Gas 2.
$Sens(pO_2) =$	Relative sensitivity of the pO_2 electrode determined from the last calibration on Gas 1 and Gas 2.
$\delta =$	Difference between $pO_2(\text{sample})$ from the first and last updatings.
predict =	Extrapolated value for pO_2 .

For $\delta < 2.66$ kPa, $pO_2(\text{sample}) = pO_2(\text{sample, upd.30})$

For 2.66 kPa $< \delta < 5.32$ kPa

 $pO_2(\text{sample}) = \frac{\text{predict} \times (\delta - 2.66) + pO_2(\text{sample}, \text{upd}.30) \times (5.32 - \delta)}{2.66}$

For $\delta \ge 5.32$ kPa $pO_2(sample) = predict$

pO₂ electrode, Continued

Corrections -

Gas/liquid relationship:

blood samples

 K_1 is a constant that describes the gas/liquid relationship for the electrode. The constant is defined as follows:

$$K_1 = 1 + \frac{1}{100} \left(-5.8370 + \sqrt{21.712 + \frac{\text{Sens}(pO_2)}{3.66294}} \right)$$

The pO_2 measured from the sample is then corrected for systematic deviations from the reference method using the following equation:

Equation A:

$$pO_{2}(\text{sample, corr}) = \frac{-d_{1} + \sqrt{d_{1}^{2} - 4 \times (e_{2} + e_{3} \times pO_{2}(\text{sample, v1}) + e_{4} \times pO_{2}(\text{sample, v1})^{2})}}{2}$$

where:

• pO_2 value of the sample after the first part of correction is as follows:

$$pO_2(\text{sample}, \text{v1}) = pO_2(\text{sample}) + (k_1 - k_2 \times e^{k_3 \times pO_2(\text{sample})^4}) \times (100.398 - B)$$

• and:

d_1	$= e_0 \times pO_2(\text{sample, v1}) + e_1$
k_1	= correction constant $=$ 0.02614
k_2	= correction constant $= 0.02107$
k_3	= correction constant $= -0.00281$
e_0, e_1, e_2, e_3, e_4	= correction constants
В	= barometric pressure in kPa

Equation A+:

When an additional correction is needed, equation A is first used together with the constants for the FLEXMODE (C195 and 165) – no message. Then the obtained results are put back into equation A as $pO_2(\text{sample})$ and then treated again, using the constants for the specific mode.

Or

Equation B:

When an additional correction is needed, equation A is first used together with the constants for the FLEXMODE (C195 and 165) – no message. Then the obtained results are put back into equation B as $pO_2(\text{sample})$ and then treated again, using the constants for the specific mode.

 $cX(\text{sample,corr}) = A_0 \times cX(\text{sample}) + A_1$

pO2 electrode, Continued

Corrections – blood samples (continued)

ABL 8XX FLEX	Mode	e ₀	e ₁	e ₂	e ₃	e ₄	\mathbf{A}_{0}	A ₁	Eq.
35/25/	S195	-2.30300	5.96942	0.83281	-6.07310	1.30565			А
15	S95						1.020	-0.200	В
	S85	-2.30300	5.96942	0.83281	-6.07310	1.30565			А
	C95						0.9965	-0.0254	В
	C55	-2.1199	4.7210	-1.0156	-4.2974	1.1035			A+
	*FM (no message)	-2.30300	5.96942	0.83281	-6.07310	1.30565			А
	*FM (message 874)						0.9965	-0.0254	В
	*FM (message 873)						0.9965	-0.0254	В
	*FM (message 872)	-2.20159	5.70807	-0.41342	-5.42718	1.19023			A+
	*FM (message 871)	-2.1199	4.7210	-1.0156	-4.2974	1.1035			A+
30/20/	S85	-2.30300	5.96942	0.83281	-6.07310	1.30565			А
10	C55	-2.1199	4.7210	-1.0156	-4.2974	1.1035			A+
	*FM (no message)	-2.30300	5.96942	0.83281	-6.07310	1.30565			А
	*FM (message 872)	-2.19314	5.81012	-0.96320	-5.46921	1.18037			A+
	*FM (message 871)	-2.1199	4.7210	-1.0156	-4.2974	1.1035			A+
05	S165	-2.30300	5.96942	0.83281	-6.07310	1.30565			А
	S95						1.020	-0.200	В
	S85	-2.30300	5.96942	0.83281	-6.07310	1.30565			А
	C95						0.9965	-0.0254	В
	C55	-2.1199	4.7210	-1.0156	-4.2974	1.1035			A+
	*FM (no message)	-2.30300	5.96942	0.83281	-6.07310	1.30565			А
	*FM (message 874)						0.9965	-0.0254	В
	*FM (message 873)						0.9965	-0.0254	В
	*FM (message 872)	-2.20159	5.70807	-0.41342	-5.42718	1.19023			A+
	*FM (message 871)	-2.1199	4.7210	-1.0156	-4.2974	1.1035			A+
00									

*FM = FLEXMODE.

pO₂ electrode, Continued

Corrections expired air samples The pO_2 measured from the sample is then corrected for systematic deviations from the reference method using the following equation: $pO_2(\text{sample}, \text{corr}) = A_0 \times pO_2(\text{sample}) + A_1 \times (B - pH_2O)$

where:

$pO_2(\text{sample})$	= uncorrected pO_2 value of a expired air sample
<i>p</i> O ₂ (sample,corr)	= corrected pO_2 value of a expired air sample
A_0	= instrument dependent correction factor
A_1	= instrument-dependent correction factor
В	= barometric pressure during the measurement
pH_2O	= partial pressure of saturated water vapour = 6.2571 kPa

ABL800FLEX	Mode	\mathbf{A}_{0}	A_1	Equation
All	Expired air	1.016	-0.004	А

When measuring on gas samples, the constant K_1 (describes the gas/liquid relationship for the electrode) is equal to 1.

Stability criteria The following stability criterion must be met to obtain a stable electrode response during **calibration**:

 $|pO_2(\text{sample}, \text{upd.last}) - pO_2(\text{sample}, \text{upd.i})| \le pO_2(\text{limit})$

This criterion is valid for 1-point calibrations (Gas 2 contains no oxygen) where:

Parameter	pO_2 value from the last updating number		
	ABL8X5 FLEX	ABL8X0 FLEX	
pO ₂ (Gas1,upd.last)	92	62	
pO ₂ (Gas1,upd.i)	86 or 87	56 or 57	
	(the relationship must be fulfilled for at least one of the updating numbers)		

 $pO_2(\text{limit})$ value for the stability criterion is 0.80 kPa/6.0 mmHg.

pO2 electrode, Continued

Stability criteriaThe following stability criteria must be met in order to obtain a stable electrode(continued)response during measurement:

 $\delta = |pO_2(\text{sample,upd.30}) - pO_2(\text{sample,upd.1})|$

For δ	Criterion
≤ 2.66 kPa	$ pO_2(\text{sample}) - pO_2(\text{sample}, \text{upd.}16) \le 0.80$
> 2.66 kPa	$-0.2 \le \frac{pO_2(\text{sample, upd.30}) - pO_2(\text{sample, upd.18})}{pO_2(\text{sample, upd.18}) - pO_2(\text{sample, upd.6})} < 0.6$

For $\delta > 2.66$ kPa:

if the following criteria are fulfilled then no result is reported:

$$\frac{pO_2(\text{sample, upd.30}) - pO_2(\text{sample, upd.18})}{pO_2(\text{sample, upd.18}) - pO_2(\text{sample, upd.6})} < -1.0$$

or

$$\frac{pO_2(\text{sample, upd.30}) - pO_2(\text{sample, upd.18})}{pO_2(\text{sample, upd.18}) - pO_2(\text{sample, upd.6})} \ge 0.6$$

Expired air samples:

Measurement on an expired air sample is accepted if the following criterion is fulfilled:

 $|pO_2 \text{ (sample,upd.30)} - pO_2 \text{ (sample,upd.24)}| \le 0.80 \text{ kPa/6.0 mmHg},$

or

 $|pO_2 \text{ (sample,upd30)} - pO_2 \text{ (sample,upd.24)}| \le 0.05 \times pO_2 \text{ (sample,upd.30)}.$

Error message "Measurement unstable" (= pO_2 response fault during electrode monitoring in Expired air mode) is displayed if the stability criterion is not fulfilled.

Metabolite electrodes

Description

The glucose electrode (E7066) and the lactate electrode (E7077) have similar construction described below.

The electrode consists of a silver cathode and a platinum anode. The electrode is protected by an electrode jacket filled with electrolyte solution and a multi-layer membrane mounted at the tip.

The membrane consisting of three layers:

- 1. outer membrane layer permeable to glucose/lactate.
- 2. middle enzyme layer.
- 3. inner membrane layer permeable to H_2O_2 .

A polarization voltage of 675 mV is applied to the electrode chain and the current through the chain is measured by an ampere meter.

Glucose or lactate molecules are transported across the outer membrane of the multi-layer membrane.

The enzyme glucose oxidase or lactate oxidase immobilized between the inner and outer membrane layers converts the glucose or lactate according to the following reactions:

glucose + $O_2 \rightarrow$ gluconic acid + H_2O_2

 $lactate + O_2 \rightarrow pyruvate + H_2O_2$

 O_2 for this reaction is supplied by the outer membrane layer and also by the oxidation of H_2O_2 at the Pt anode.

The H_2O_2 produced by the enzyme reaction is transported across the inner membrane to the Pt anode.

 $H_2O_2 \rightarrow 2H^+ + O_2 + 2e^-$

When a potential is applied to the electrode chain, the oxidation of H_2O_2 produces an electrical current proportional to the amount of H_2O_2 , which in turn is directly related to the amount of glucose or lactate.

To complete the electrical circuit a reduction reaction (where electrons are consumed) at the cathode converts Ag^+ (from AgCl) to Ag:

 $Ag^{\scriptscriptstyle +} \, + e^{\scriptscriptstyle -} \, \rightarrow \, Ag$

In order to maintain a charge balance between the anode and the cathode, two Ag^+ ions need to be reduced for one molecule of H_2O_2 to be oxidized.

Zero current The zero current is a small background current measured at the electrode when no glucose or lactate is present in a solution. As the rinse solution contains no glucose or lactate, a baseline representing the zero current, I_0 as a function of time ($I_0 = f(t)$), is obtained from continuous measurements on the rinse solution.

This I₀ baseline is obtained as follows:

- At the end of a rinse, with the rinse solution in the measuring chamber, zero current of the metabolite electrodes is measured periodically (the intervals between these measurements become longer if the analyzer is idle).
- The previous N (N = 8) measurements on the rinse solution before a calibration or a sample measurement starts are used to obtain a baseline representing the time function of I_0 .

Zero current (continued)

- The baseline is extrapolated thoughout the whole electrode calibration or sample measurement period, and represents the zero current time function.
- The I₀ baseline is used to determine the sensitivity of the metabolite electrode.

The extrapolated final zero current value at the metabolite electrodes at the last updating (illustrated by the I_0 baseline) is determined as follows:

$$I_0(\text{final}) = A_1 \times I_{\text{slope}} \times (t_{\text{final}} - t_{\text{mean}}) + I_0 \text{ (mean)} \text{ pA}$$

where:

 A_1 = Empirical constant dependent on electrode and determined from tests against the reference method

 $\mathbf{t}_{\text{final}}$

= Time of the last measurement updating on the calibration solution or sample.

t_{mean}

= The mean time of the N zero current measurements on the rinse solution:

$$t_{mean} = \frac{\sum_{n=1}^{N} t_n}{N} \quad sec$$

where t_n is the time of the n^{th} measurement on the rinse solution.

 $I_0(mean)$ = The zero current at the mean time (t_{mean}):

$$I_0(\text{mean}) = \frac{\sum_{n=1}^{N} I_{0,n}}{N} \quad pA$$

where $I_{0,n}$ is the zero current at the n^{th} measurement on the rinse solution.

I_{slope}

=

$$I_{slope} = \frac{\sum_{n=1}^{N} (t_n - t_{mean}) \times (I_{0,n} - I_0(mean))}{\sum_{n=1}^{N} (t_n - t_{mean})^2} \quad pA/second$$

If $I_{slope} > 0.0$, it is set to 0.0

The zero current of the metabolite electrodes should be less than 10000 pA.

The slope or gradient of the I_0 baseline

Sensitivity The sensitivities of the metabolite electrodes are calculated by measuring the current on Calibration Solution 1 (Cal 1) and then correcting for the zero current using the extrapolated I₀ baseline.

Cal 1 has a nominal glucose concentration of 10 mmol/L and a nominal lactate concentration of 4 mmol/L. The precise values are batch-individual and contained in the bar codes of the Cal 1 bottles.

The diagram below, together with the table, describes in principle how the sensitivities for the metabolite electrodes are obtained.

The current at the metabolite electrodes with Cal 1 in the measuring chamber, I(Cal 1), is measured 30 times at regular intervals. The current at the 15^{th} updating is used to determine sensitivity of the glucose electrode, and the current at the 30^{th} updating is used to determine sensitivity of the lactate electrode.

The current due to the glucose or lactate presence in the sample is then calculated as the difference between the current at the final updating (the 15^{th} for the glucose and the 30^{th} for the lactate electrode) and the zero current at that time point:

Т

 $I(Cal 1) = I(Cal 1, final) - I_0(final)$

The sensitivities of the electrodes are calculated as follows:

$$Sens = \frac{I(Cal 1)}{cX(Cal 1)} T$$

where:				
cX(Cal 1)	=	Actual concentration of glucose/lactate in the Cal 1 solution.		
I ₀ (final)	=	Extrapolated final zero current value of the metabolite electrode at the time of the last updating.		
TI(Cal 1)	=	electrode current due to presence of glucose/lactate.		
	where: cX(Cal 1) $I_0(final)$ TI(Cal 1)	where: cX(Cal 1) = $I_0(final) =$ TI(Cal 1) =		

The sensitivity limits of the metabolite electrodes are as follows:

Electrode	Sensitivity Limits
Glucose	100 - 1800 pA/mM
Lactate	150 - 2000 pA/mM

Drift The drift in the sensitivity of the metabolite electrodes is calculated from the following equations:

Drift =
$$\frac{I(Cal1, final) - I_0(final)}{Sens} - cX(Cal1)$$

where:

I(Cal 1,final)	= Current at the final measurement on Cal 1 solution.
Sens	= Sensitivity of the glucose/lactate electrode from the previous calibration.
cX(Cal 1)	= Actual concentration of glucose/lactate in the Cal 1 solution.
I ₀ (final)	= Extrapolated final zero current value of the metabolite electrode measured at the time of the last updating.

The default drift tolerances set by Radiometer for the metabolite electrodes are: $\pm\,0.5$ mM for the glucose electrode

 $\pm\,0.2$ mM for the lactate electrode.

Measurement	The glucose/lactate concentration in a sample is calculated from the following equation:		
			$cX(\text{sample}) = \frac{I(\text{sample}) - I_0(\text{final})}{\text{Sens}}$
	where:		
	I(sample)	=	Current of the metabolite electrode measured on the sample.
	I ₀ (final)	=	Extrapolated final zero current value of the metabolite electrode at the time of the last sample updating.
	Sens	=	Relative sensitivity of the metabolite electrode.

Corrections The measured metabolite concentration is corrected for systematic deviations from the reference method by the following equations:

Equation A:

 $cX(\text{sample}, \text{corr})_{195\mu L} = A_{0(195\mu L)} \times cX(\text{sample}) + A_{1(195\mu L)}$

and

Equation B:

 $cX(\text{sample,corr})_{\text{micromode}} = A_{0,\text{micromode}} \times cX(\text{sample,corr})_{195 \,\mu\text{L}} +$

A_{1,mocromode}

where:

cX(sample)	= uncorrected measured metabolite concentration from a sample
<i>c</i> X(sample, corr)	= corrected measured metabolite concentration from a sample
A_0	= instrument-dependent correction factor
A_1	= instrument-dependent cut-off

When an additional correction is needed, equation A is first used together with the constants for the 195 μ L mode. Then the obtained results are put back into equation B as *c*X(sample) and then treated again, using the constants for the specific mode.

Note that subscript "195 μ L" in the equations above is used for convenience sake and stands for "FLEXMODE (no message)", "FLEXMODE (message 874)", and "FLEXMODE (message 873)".

Corrections (continued)

Corrections for cGlu :

ABL8XX FLEX	Mode	$\mathbf{A_0}$	A_1	Equation
35/25/15	S195	0.94	0.1	А
	S95	1.00	0.0	A, B
	C95	1.06	0.0	A, B
	C35	1.16	0.0	A, B
	*FM (no message)	0.94	0.1	А
	*FM (message 874)	1.06	0.0	A, B
	*FM (message 873)	1.06	0.0	A, B
05	S165	0.94	0.1	А
	S95	1.00	0.0	A, B
	C95	1.06	0.0	A, B
	C35	1.16	0.0	A, B
	*FM (no message)	0.94	0.1	А
	*FM (message 874)	1.06	0.0	A, B
	*FM (message 873)	1.06	0.0	A, B

*FM = FLEXMODE.

Corrections for *c*Lac:

ABL8XX FLEX	Mode	\mathbf{A}_{0}	\mathbf{A}_{1}	Equation
35/25/15	S195	0.97	-0.04	А
	S95	1.03	0.03	A, B
	C95	1.03	0.18	A, B
	C35	1.13	0.05	A, B
	*FM (no message)	0.97	-0.04	А
	*FM (message 874)	1.03	0.18	A, B
	*FM (message 873)	1.03	0.18	A, B

*FM = FLEXMODE.

Corrections (continued)

ABL8XX FLEX	Mode	A ₀	A ₁	Equation
05	S165	0.97	-0.04	А
	S95	1.03	0.03	A, B
	C95	1.03	0.18	A, B
	C35	1.13	0.05	A, B
	*FM (no message)	0.97	-0.04	А
	*FM (message 874)	1.03	0.18	A, B
	*FM (message 873)	1.03	0.18	A, B

*FLEXMODE = adaptive measuring mode.

Stability criteria The following stability criteria must be met to obtain a stable electrode response during calibration:

 $I(Cal 1,upd.30) - I(Cal 1, upd.21) - 9 \times I_{slope} \le 0$

 $S_{d,zero} < S_{d,max}$

$$\tau = \frac{-9.5}{\log \frac{I(Cal1, upd.1) - I(Cal1, upd.11)}{I(Cal1, upd.11) - I(Cal1, upd.21)}} \le 50$$

All of the three criteria must be fulfilled for a calibration using Cal 1 solution where:

I(Cal 1,upd.30)	=	Electrode current at the 30 th /21 st /11 th /1 st updating during
I(Cal 1,upd.21)		measurement on Cal 1 solution, respectively.
I(Cal 1,upd.11)		
I(Cal 1,upd.1)		
S _{d,zero}	=	Spreading of the zero point current updatings around the regression line.
S _{d,max}	=	If Sens > 400 pA/mM, then $S_{d, max} = 0.025 \times Sens$,
		otherwise $S_{d, max} = 10.0$.

Stability criteria (continued)	τ	=	Should be less than or equal to 50,		
			and		
			$\log \frac{I(Cal1, upd.1) - I(Cal1, upd.11)}{I(Cal1, upd.11) - I(Cal1, upd.21)}$		
			should be negative or equal zero.		

The following stability criterion must be met to obtain a stable electrode response during measurement:

 $S_{d,zero}\!<\!S_{d,max}$

where:

S _{d,zero}	=	Spreading of the zero point current updatings around the regression line.
S _{d,max}	=	If Sens > 400 pA/mM, then $S_{d,max} = 0.025 \times Sens$, otherwise $S_{d,max} = 10.0$.

The (glucose or lactate) in the sample is cX(sample,corr).

If the corrected concentration of the metabolite, cX(sample,corr) > 1, the following criteria must be fulfilled:

 $0 \leq \frac{I(\text{sample}, \text{upd.}30) - I(\text{sample}, \text{upd.}21) - 9 \times I_{\text{slope}}}{I(\text{sample}, \text{upd.}30) - I_0(\text{zero})} \leq 0.20$

otherwise

$$\left| \frac{I(\text{sample}, \text{upd.}30) - I(\text{sample}, \text{upd.}21) - 9 \times I_{\text{slope}}}{\text{Sens}} \right| \le 0.14$$

where:

I(sample,upd.30)	=	Electrode current at the 30 th /21 st updating during
I(sample,upd.21)		measurement on sample, respectively.
I ₀ (zero)	=	zero current extrapolated to the time of the
		measurement.

Stability criteriaIf all the criteria below are fulfilled, then the result of the measurement will be
marked with an interference error.

 $\frac{I(\text{sample}, \text{upd.}30) - I(\text{sample}, \text{upd.}23)}{I(\text{sample}, \text{upd.}16 - I(\text{sample}, \text{upd.}9)} \ge 1$ I(sample, upd. 16) > I(sample, upd. 12) I(sample, upd. 12) > I(sample, upd. 9) cX(sample, corr) > 1.5 mmol/L

where:

I(sample,upd.30) I(sample,upd.23) I(sample,upd.16) I(sample,upd.12) I(sample,upd.9)	=	Electrode current at the 30 th /23 rd /16 th /12 th /9 th updating during measurement on sample, respectively.
<i>c</i> X(sample,corr)	=	Corrected concentration of glucose or lactate in the sample.

3. Optical measuring principles

Overview

Introduction	This chapter describes the optical system, its construction, and the measuring method used.	
Contents	This chapter contains the following topics.	
	Optical system	3-2
	Correcting for interferences	3-7
	Measurement and corrections	3-9
	References	3-14

Optical system

Measured
parametersThe optical system of the ABL800 FLEX analyzer is designed to measure the
following parameters:

Parameter	Description
<i>c</i> tHb	concentration of total hemoglobin
sO ₂	oxygen saturation
FO ₂ Hb	fraction of oxyhemoglobin
FCOHb	fraction of carboxyhemoglobin
FHHb	fraction of deoxyhemoglobin
FMetHb	fraction of methemoglobin
FHbF	fraction of fetal hemoglobin
ctBil	concentration of total bilirubin (the sum of unconjugated and conjugated bilirubin) in plasma

NOTE: ctBil can be measured on a whole blood or plasma sample. Plasma samples provide the optimal measurement performance. To obtain optimal accuracy when following a patient trend in ctBil, use the same aspiration mode and the same analyzer.

Hematocrit (Hct) is also available as a derived parameter.

Construction The optical system is based on a 128-wavelength spectrophotometer with a measuring range of 478 - 672 nm. The spectrophotometer is connected via an optical fiber to a combined hemolyzer and measuring chamber.

Spectrofotometer

ConstructionThe method used in the analyzer's optical system is visible absorption(continued)spectroscopy.

Step	Description
1	The blood sample is transported to the cuvette positioned in the hemolyzer unit. The temperature of the cuvette is regulated to 37 °C.
2	1 μ L of the sample is ultrasonically hemolyzed in the cuvette at a frequency of about 30 kHz in order to rupture the walls of the red blood cells so that their content is mixed with the blood plasma, giving an optically clear solution. There is no bilirubin in the red blood cells, so after hemolyzation the red blood cell intracellular fluid dilutes the plasma bilirubin. The calculation discussed in <i>Measurement and Corrections</i> corrects for this dilution.
	To eliminate air bubbles in the sample and to enhance hemolyzation, an over-pressure of one atmosphere is maintained throughout hemolyzation and measurement.
3	Light from a 4 Watt halogen lamp is sent to the cuvette via an infra- red filter and a biconvex lens.
	The voltage across the halogen lamp is regulated by a thermostatted photodiode so that the amount of light sent to the cuvette has a constant intensity.
4	The light transmitted through the cuvette is guided to the spectrometer via an optical fiber.
5	The light passes through a slit that directs it towards a combined mirror and concave grating.
6	The grating separates the light into 128 single wavelengths and the mirror focuses the 128 light signals on a photodiode array.
7	The photodiode array has 128 diodes or pixels, one for each wavelength, which convert the monochromatic light signals to currents.
8	The currents and therefore the intensity of the light signals are measured at each of the 128 diodes, which form the basis for the absorption spectrum for a particular sample.
9	The spectrum is sent to the analyzer's computer, where the calculations of the oximetry parameter values are made.

Lambert-Beer's Absorption spectroscopy is based on Lambert-Beer's law which states that the measured absorbance for a single compound is directly proportional to the concentration of the compound and the length of the light path through the sample [1]:

$$A_{\rm y}^{\lambda} = \varepsilon_{\rm y}^{\lambda} \times c_{\rm y} \times l$$

where:

l

 $A_{y}^{\lambda} = \text{absorbance of compound y at wavelength } \lambda$

- $\varepsilon_{y}^{\lambda}$ = extinction coefficient of compound y at wavelength λ (a constant, characteristic of the compound)
- $c_{\rm y}$ = concentration of compound y in sample

= length of the light path

Absorbance The absorbance (A) of a compound is defined as the logarithm of the ratio of the light intensity before and after transmission through the compound.

In practice it is the logarithm of the ratio of the light intensity transmitted through water to the light intensity transmitted through the compound.

$$A = \log \frac{I_0}{I}$$

where:

 I_0 = intensity of light transmitted through water (I_0 is measured as the intensity of light transmitted through the Cal 1 or Cal 2 solutions)

I = intensity of light transmitted through the compound

Total absorbance For samples containing more than one optically active compound, the total absorbance (A_{total}) is the sum of the individual compounds' absorbance, since absorbance is an additive quantity.

For example, if a sample contains 6 compounds y_1, y_2, \dots, y_6 , the total absorbance measured for that sample at wavelength λ_1 is:

$$\begin{aligned} A_{\text{total}}^{\lambda_{1}} &= A_{y_{1}}^{\lambda_{1}} + A_{y_{2}}^{\lambda_{1}} + A_{y_{3}}^{\lambda_{1}} + A_{y_{4}}^{\lambda_{1}} + A_{y_{5}}^{\lambda_{1}} + A_{y_{6}}^{\lambda_{1}} \end{aligned}$$
$$= l \Big(\varepsilon_{y_{1}}^{\lambda_{1}} c_{y_{1}} + \varepsilon_{y_{2}}^{\lambda_{1}} c_{y_{2}} + \varepsilon_{y_{3}}^{\lambda_{1}} c_{y_{3}} + \varepsilon_{y_{4}}^{\lambda_{1}} c_{y_{4}} + \varepsilon_{y_{5}}^{\lambda_{1}} c_{y_{5}} + \varepsilon_{y_{6}}^{\lambda_{1}} c_{y_{6}} \Big) \end{aligned}$$

If there are Y compounds and measurements are taken at *n* wavelengths, a general expression can be written for A_{total} at the wavelength λ_n :

$$A_{\text{total}}^{\lambda_n} = \sum_{y=1}^{Y} \varepsilon_y^{\lambda_n} \times c_y \times l$$

where:

 λ_n = the individual wavelengths.

Continuous spectrum

 $A_{\text{total}}^{\lambda_n}$ can be depicted graphically as a function of wavelength, and if the differences between the wavelengths are small enough, a continuous spectrum is produced.

EXAMPLES:

The figure below shows three spectra; pure O_2Hb , pure HHb in a low concentration, a spectrum of 92 % oxygenated hemoglobin obtained by adding the spectra of O_2Hb and HHb. The additivity of absorption and the continuity of the spectra can clearly be seen.

Example of the spectrum obtained from unconjugated bilirubin at concentration of 200 μ mol/L.

The spectrum of conjugated bilirubin is slightly different.

Determining In the spectrum taken of a sample, the absorption recorded at each wavelength contains contributions from each of the compounds in the sample. The task then is to determine the magnitude of that contribution and thereby the concentration of each compound in the sample.

The concentrations are determined using the following equation:

$$c_{\rm y} = \sum_{n=1}^{128} \mathbf{K}_{\rm y}^{\lambda_n} A_{\rm total}^{\lambda_n}$$

where:

 $K_{y}^{\lambda_{n}} = a \text{ constant specific to compound y at wavelength } \lambda_{n}.$

Matrix of constants The constants ($K_y^{\lambda_n}$) are determined using Multivariate Data Analysis [2] where the spectra of the calibration compounds were considered together with the reference values of the calibration compounds. The essential interfering substances were also taken into account.

Correcting for interferences

HbF versusFetal hemoglobin (HbF) does not have the same spectrum as adult hemoglobinHbA(HbA) due to a slight variation in molecular structure. The presence of HbF in a
sample will interfere with the result if it is not corrected for.

It is thus important when measuring hemoglobin levels in premature neonates and neonates aged 0 to 3 months, as well as adults suffering from thalassemia, to take into account this difference [3].

The ABL800 FLEX analyzers automatically correct for HbF.

The diagram below shows the transition from fetal hemoglobin to adult hemoglobin [4].

This graph is only schematic and cannot be used to determine FHbF.

Deviation of Results	If the difference between the two types of hemoglobin is not accounted for in measurements on samples containing HbF, e.g. from premature neonates and neonates aged 0 to 3 months, then a deviation in the measurement will arise.
	The deviation is most important for measurements of oxygen saturation (sO_2) and the fraction of carboxyhemoglobin (<i>F</i> COHb), since inaccurate measurements of these parameters can lead to incorrect diagnostic interpretation of the results, and consequent risk of inappropriate treatment.
Detecting HbF	The presence of HbF in a sample is detected from the difference spectrum between fetal and adult oxyhemoglobin. From the size of the difference spectrum the concentration of fetal oxyhemoglobin, cO_2HbF , can be measured.
Correcting for HbF	The amount of cO_2HbF exceeding a certain level indicates HbF interference. The analyzer automatically corrects for this interference by subtracting the difference spectrum of fetal oxyhemoglobin from the measured spectrum. It then makes further calculations, using cO_2HbF to measure <i>F</i> HbF.

Correcting for interferences, Continued

Most likely interfering substances	Fetal hemoglobin and non-hemoglobin substances present in blood that absorb light within the same wavelength range used to measure the oximetry parameters and bilirubin, will interfere with the true spectra of the blood samples.				
	The optical system in the ABL800 FLEX analyzers compensates for the most likely interfering substances by repressing their spectra.				
	The interference from following substances the analyzer compensates for when measuring the oximetry parameters:				
	Intralipids (turbidity)				
	Sulfhemoglobin, SHb				
Repressing spectra	Repressing the spectra of the likely interfering substances is done in two ways depending on the substance:				
	• Either the substance is taken account of in the calculation of the matrix of constants, K (see the section <i>Measuring Principle</i> in this chapter). This applies to Intralipids and Sulfhemoglobin,				
	• Or the substance is detected, and the measured spectrum is corrected accordingly. This applies to HbF.				
Residual spectrum	A measured spectrum is compared to a model spectrum calculated from the determined concentrations. The difference between the two spectra is then called the residual spectrum. If the difference is too high a warning (Oxi spectrum mismatch) is issued on all the oximetry module parameters c tHb, sO_2 , FO_2 Hb, $FCOHb$, $FMetHb$, $FHHb$, $FHbF$ and c tBil.				
	The same action is taken if one of the following conditions exist and FHb_{deriv} is defined as one of the parameters <i>s</i> O2, <i>F</i> O ₂ Hb, <i>F</i> COHb, <i>F</i> MetHb, <i>F</i> HHb:				
	• $ctHb < -0.1 \text{ mmol/L or } ctHb > 25 \text{ mmol/L}.$				
	• $FHb(deriv) <-2\%$ or $FHb(deriv) > 102\%$.				
	• Negative fraction of SHb<-2% is detected.				
	• Value of Turbidity<-0.5%.				

Measurement and corrections

Oximetry parameters	The oximetry parameters are calculated as follows:					
		Parameter		Equation		
		<i>c</i> tHb(meas)		$= cO_2Hb + cCOHb + cHHb + cMetHb$		
		sO ₂		$=\frac{cO_{2}Hb}{ceHb}$ ceHb = cHHb + cO_{2}Hb (effective hemoglobin)		
		FC	∂₂Hb	$=\frac{cO_2Hb}{ctHb}$		
		FC	OHb	$=\frac{c\text{COHb}}{c\text{tHb}}$		
		FHHb		$=\frac{cHHb}{ctHb}$		
		FM	letHb	$=\frac{cMetHb}{ctHb}$		
		F	HbF	$=\frac{cHbF}{ctHb}$		
	where:					
	<i>c</i> O ₂ Hb	= 0	concentra	tion of oxyhemoglobin in the sample		
	<i>c</i> COHb	= 0	concentra	tion of carboxyhemoglobin in the sample		
	<i>c</i> HHb	= 0	concentra	tion of deoxyhemoglobin in the sample		
	<i>c</i> MetHb	= 0	concentra	tion of methemoglobin in the sample		
	<i>c</i> HbF	= 0	concentra	tion of fetal hemoglobin in the sample		
Bilirubin Bilirubin is calculated as follows:			follows:			
	$ctBil(P) = \frac{ctBil(B)}{1 - Hct(calc)}$					
	where:					
	<i>c</i> tBil(P)	=	concent	ration of total bilirubin in plasma		
	<i>c</i> tBil(B)	=	concentration co	ration of diluted plasma bilirubin after sample zation		
	Hct(calc)	=	calculate	ed hematocrit (a fraction).		

Measurement and corrections, Continued

Bilirubin

(continued)

$$Hct(calc) = \frac{0.0301}{g/dL} \times ctHb$$

For further details on Hct(calc) please refer to *Interference Tests* and the explanation of MCHC (Mean Corpuscular Hemoglobin Concentration) in *chapter* 5 in this manual.

r	81	
	Parameter	Is not calculated if
	sO ₂ , FCOHb, FMetHb,	$ceHb = cHHb + cO_2Hb < 0.75 \text{ mmol/L};$
	FHHb	ctHb< 1 mmol/L
	ctBil	ctHb > 15.5 mmol/L

Restrictions The following parameters will not be calculated:

The following conditions are required to exclude HbF interference:

Parameter or Feature	Requirement
сеНb	> 3 mmol/L
FCOHb	< 15 %
FMetHb	< 10 %
"HbF correction" has not been activated	If $ctHb < 5 \text{ mmol/L}$, cO_2HbF should be more than 1 mmol/L.
	If $ctHb > 5 \text{ mmol/L}$, $cO_2HbF/ctHb$ should be more than 0.2.
"HbF correction" has been activated	No lower limit value for cO_2HbF is required, i.e. even adult blood samples will be corrected for HbF.
	It may be of value when analyzing blood samples from newborns who received adult blood transfusion. In these cases <i>F</i> HbF can be lower than 20 % and significant deviations of oximetry parameters and bilirubin can occur.
HbF suppression has been activated	The FHbF value is displayed by the ABL835/30 FLEX.
	Message "HbF detected" is displayed on the other analyzer versions with the oximetry module installed.
<i>s</i> O ₂ <50 % or <i>c</i> tHb<5 mmol/L	Message " <i>F</i> HbF measurement is not possible" is displayed by the ABL835/30 FLEX if a HbF suppression has been activated.

Measurement and corrections, Continued

Corrections for
ctHbThe uncorrected hemoglobin concentration, ctHb(sample), measured on capillary
or syringe samples is corrected as follows:Equation A:

ctHb(sample, corr)= $\frac{c$ tHb(sample)}{F_{cuv}} F_{dil}

where:

where:		
<i>c</i> tHb(sample,corr)	=	corrected ctHb
F _{cuv}	=	Analyzer-dependent constant determined at tHb calibrations and automatically stored by the analyzer
F _{dil}	=	Analyzer dependent constant determined during tests against the reference method, which corrects for Hb dilution in the different aspiration modes.

ABL8XX FLEX	Mode	F _{dil}	Equation
35/25/15	S195	1.0000	А
	S95	0.9630	А
	S85	1.0050	А
	C95	0.9630	А
	C55	0.9220	А
	C35OXI	0.9570	А
	*FM (no message)	1.0110	А
	*FM (message 874)	0.9630	А
	*FM (message 873)	0.9630	А
	*FM (message 872)	0.9490	А
	*FM (message 871)	0.9440	А
	*FM (message 870)	0.9230	А
	*FM (message 869)	0.9230	A

*FM = FLEXMODE

~				
Corrections for ctHb (continued)	ABL8XX FLEX	Mode	F _{dil}	Equation
	30/20/10	S85	1.0050	А
		C55	0.9220	А
		C35 OXI	0.9570	А
		*FM (no message)	0.9570	А
		*FM (message 872)	0.9490	А
		*FM (message 871)	0.9440	А
		*FM (message 870)	0.9230	А
		*FM (message 869)	0.9230	А

Measurement and corrections, *Continued*

*FM = FLEXMODE

Corrections for
ctBilThe uncorrected total bilirubin concentration, ctBil(sample), measured on capillary
or syringe samples is corrected as follows:EncodeEncode

Equation A:

ctBil(sample corr)-	ctBil(sample)		
ctbn(sample,com)-	F _{cuv} F _{dil}		

where:

where:		
<i>c</i> tBil(sample,corr)	=	corrected ctBil
F _{cuv}	=	Analyzer-dependent constant determined at tHb calibrations and automatically stored by the analyzer
F _{dil}	=	Analyzer dependent constant determined during tests against the reference method, which corrects for <i>c</i> tBil dilution in the different aspiration modes.
Measurement and corrections, Continued

Corrections for
ctBil (continued)

ABL8XX	Mode	$\mathbf{F}_{\mathbf{dil}}$	Equation
35	S195	1.0050	А
	S95	0.9320	А
	S85	1.0000	А
	C95	0.9320	А
	C55	0.8640	А
	C35oxi	0.9160	А
	*FM (no message)	0.9900	А
	*FM (message 874)		
	*FM (message 873)		
	*FM (message 872)		
	*FM (message 871)		
	*FM (message 870)		
30	S85	1.0000	А
	C55	0.8640	А
	C35 OXI	0.9160	А
	*FM (no message)	0.9570	A
	*FM (message 872)		
	*FM (message 871)		
	*FM (message 870)		

*FM = FLEXMODE.

References

List of The list of the references for *Chapter 3, The Optical Measuring Principles:*1. Ewing GW. Instrumental methods of chemical analysis. 5th ed. McGraw-Hill, 1985. 2. Martens H. Multivariate calibration: quantitative interpretation of non-selective chemical data. Dr. Techn. Thesis, NTH Univ. of Trondheim, 1986. 3. Krzeminski A. Why correct for fetal hemoglobin in blood oximetry measurements? Radiometer Publication Info. No. 1992-3. Copenhagen:

Radiometer Medical A/S, 1992.

4. Huehns ER, Beaven GH. Developmental changes in human hemoglobins. Clin Dev Med 1971; 37: 175-203.

4. User-defined corrections

Overview

Introduction	This chapter describes the basis of the user-defined corrections available for al measured parameters.	ll the
Contents	This chapter contains the following topics.	
	General information	4-2
	Correction factors for oximetry parameters and bilirubin	4-4
	Electrolyte and metabolite parameters	4-7

General information

- **Purpose of use** User-defined corrections are most commonly implemented in situations where the values measured for a particular parameter by two or more analyzers, deviate consistently from each other.
 - **NOTE:** Since the performance of all analyzers is tested as described in Chapter 5, Performance Characteristics, and each instrument is assumed to operate accurately and optimally, the unnecessary correction of parameter values by the user can lead to inaccurate measurements being reported.

User-defined User-defined corrections are based on a linear correlation between the measured values (without user-defined corrections) and the displayed values (with user-defined corrections).

The correction factors for each measured parameter are the slope and the offset of the correction line. With user-defined corrections it is possible to change the values of either one or both of these correction factors, depending on the parameter type.

Corrected value = Slope \times Uncorrected value + Offset

The diagram below is a schematic representation of the relationship between correction lines without and with user-defined correction.

General information, Continued

Entering user-defined corrections	The slope/offset for each parameter are configured in the Parameters Setup under General Setup. User-corrected values are marked with a "*" after the result.
	NOTE: The user-defined corrections will be applied to measurements on QC solution unless the "Apply parameter corrections to QC" option was deactivated in Miscellaneous Setup.
	For detailed instructions on how to enter user-defined corrections, refer to the section <i>Parameter Setup</i> in <i>Chapter 3</i> of the <i>Operator's Manual</i> .

Allowed

corrections

Correction factors for oximetry parameters and bilirubin

Parameter	Allowed User-defined Corrections	
	Slope	Offset
ctHb	Yes	No
sO2	Yes	Yes
FCOHb	No	Yes
FMetHb	No	Yes
FO ₂ Hb	No	No
FHHb	No	No
FHbF	Yes	Yes
ctBil	Yes	Yes

The following corrections can be user-defined for the oximetry parameters and bilirubin:

NOTE: In order to define the corrections accurately, the measurements of the oximetry parameters and bilirubin on the ABL800 FLEX analyzers should be made without any entered corrections. To avoid truncation errors from an enabled "Out of range suppression" function it is important to disable the function.

The following recommendations apply to *c*tHb:

Item	Description
Units	g/dL; g/L; mmol/L
Sample	Set <i>c</i> tHb of a SAT100 sample to \approx 15 g/dL (9.3 mmol/L) and pH \approx 7.4
<i>c</i> tHb, maximum point	Uncorrected or corrected: $\approx 15 \text{ g/dL} \text{ or } 9.3 \text{ mmol/L}$
Slope	0.950 - 1.050

sO₂

*c*tHb

The following recommendations apply to sO_2 :

Item	Description
Units	Fraction
Sample	Set <i>c</i> tHb of gas equilibrated SAT0 and SAT100 samples to \approx 15 g/dL (9.3 mmol/L) and pH \approx 7.4
Slope	0.900 - 1.100
Offset	± 0.050

Correction factors for oximetry parameters and bilirubin, *Continued*

FCOHb

The following recommendations apply to FCOHb:

Item	Description
Units	Fraction
Sample	The zero point (<i>F</i> COHb \approx 0) is saturated to approximately SAT100, and <i>c</i> tHb is set to \approx 15 g/dL (9.3 mmol/L) and pH \approx 7.4.
Offset	± 0.050

FMetHb

The following recommendations apply to *F*MetHb:

Item	Description
Units	Fraction
Sample	The zero point (<i>F</i> MetHb \approx 0) is saturated to approximately SAT100, and <i>c</i> tHb is set to \approx 15 g/dL (9.3 mmol/L) and pH \approx 7.4.
Offset	± 0.050

FHbF

The following recommendations apply to *F*HbF:

Item	Description
Units	Fraction
Sample	Radiometer recommends that <i>c</i> tHb in the adult samples (with $FHbF = 0$) and fetal samples (with high <i>F</i> HbF) is set to ≈ 15 g/dL (9.3 mmol/L), $sO_2 \approx 100$ %, and pH ≈ 7.4 .
	The "Correction for HbF levels less than 20 %" function should be enabled in order to have the <i>F</i> HbF value displayed for the adult sample.
	Averaging repeated measurements on blood from different donors gives an optimized accuracy of the correction. Averaging repeated measurements on blood from the same donor also improves the accuracy.
Slope	0.800 - 1.200
Offset	± 0.20

Correction factors for oximetry parameters and bilirubin, *Continued*

The following recommendations apply to *c*tBil:

Item	Description
Units	μmol/L
Sample	Radiometer recommends that human plasma or serum is used with pH \approx 7.4 (the analyzer reading). Zero point sample could be adult sample (ctBil \approx 0 µmol/L) and maximum point could be an unconjugated bilirubin sample with <i>c</i> tBil \approx 300 - 400 µmol/L.
	Averaging repeated measurements on samples from different donors gives an optimized accuracy of the correction. Averaging repeated measurements on samples from the same donor also improves the accuracy.
	Commercial bilirubin standards can interfere with bilirubin measurement because they may have an absorbance spectrum different from that of human plasma.
Slope	0.5 - 1.5
Offset	± 100

FO₂Hb and FHHb The units for FO₂Hb and FHHb are [Fraction].

After the user-defined corrections of the parameters sO_2 , FCOHb and FMetHb have been carried out, FO_2 Hb and FHHb are automatically calculated using the formulae stated below, since the sum of the fractions FCOHb, FMetHb, FO_2 Hb and FHHb as defined must be equal to 1.0:

FO₂Hb:

 $FO_2Hb = (1 - FCOHb - FMetHb) \times sO_2$

FHHb:

 $FHHb = (1 - FCOHb - FMetHb) \times (1 - sO_2)$

offset

Electrolyte and metabolite parameters

Preparatory
actionsPrior to entering corrections for the electrolyte and metabolite parameters, the user
must obtain the reference values for the chosen parameters using the method
accepted in his/her laboratory.

It should be noted that in order to define corrections:

- Measurements should be taken on the analyzer without user-defined corrections, and on the reference analyzer.
- A series of measurements that cover the entire measuring range should be performed.
- The measurements should be made simultaneously on the ABL800 FLEX and reference analyzers, and samples must be handled correctly.
- The slope and the offset must be calculated. The user may, for example, make a linear correlation between the values measured on the ABL800 FLEX and the reference analyzers, using the ABL800 FLEX as an independent variable.
- If the measurements are carried out on samples with values within the normal reference range, then the user may change the offset and leave the slope unchanged.
- The user must verify the corrections that are entered.

Details of these procedures may be found in the section *Definitions and Test Conditions* in *Chapter 5*.

Correcting the The following corrections to the slope are possible within the stated limits: **slope**

Parameter	Slope (mmol/L)
$c\mathrm{K}^{\scriptscriptstyle +}$	0.750 - 1.250
$c\mathrm{Na}^+$	0.850 - 1.150
cCa^{2+}	0.800 - 1.200
$c\mathrm{Cl}^-$	0.850 - 1.150
<i>c</i> Glu	0.750 - 1.250
cLac	0.750 - 1.250

Correcting the	The following	corrections to the	offset are	possible	within the	stated limits:
	ine romo mig		011000000	00001010		

Parameter:	$c\mathrm{K}^{\scriptscriptstyle +}$	$c \mathrm{Na}^+$	$c\mathrm{Ca}^{2+}$	$c\mathrm{Cl}^-$	cGlu	cLac
Offset (mmol/L):	± 0.3	± 5	± 0.05	± 5	± 0.5	± 0.5

Electrolyte and metabolite parameters, Continued

Resetting
corrections to
default valuesThe Radiometer default values for the electrolyte and metabolite parameters must
be reset manually by the user to 1.000 for each parameter via the Parameters
Setup screen.

5. Performance characteristics

Overview

Introduction	This chapter describes performance characteristics for each measured parameter and test conditions to obtain them.	ter
Contents	This chapter contains the following topics.	
	Definition of terms and test conditions	5-2
	Performance test results – chart description	5-5
	Performance test results - pH	5-8
	Performance test results – <i>p</i> CO ₂	5-10
	Performance test results $-pO_2$	5-13
	Performance test results – cK^+	5-16
	Performance test results $-cNa^+$	5-18
	Performance test results – cCl^{-}	5-20
	Performance test results $-cCa^{2+}$	5-26
	Performance test results – <i>c</i> Glu	5-24
	Performance test results – <i>c</i> Lac	5-26
	Performance test results – <i>c</i> tHb	5-28
	Performance test results - oximetry	5-30
	Performance test results - bilirubin	5-40
	Additional information about FLEXMODE	5-46
	Interference tests	5-47
	References	5-55

Definition of terms and test conditions

General information	Performance specifications are achieved by comparison between the ABL800 FLEX analyzers and the primary reference methods, and by comparison between the ABL800 FLEX analyzers and the ABL735.
	Performance specifications of the ABL800 FLEX analyzers are described, using the following:
	• $Bias_{Ref}$ = the mean difference between the ABL800 FLEX and the primary reference methods.
	• $Bias_{ABL}$ = the mean difference between the ABL800 FLEX and the ABL735.
	• Repeatability
	• Reproducibility
	• Total variation range
	• Imprecision.
Bias	The bias of a quantity is defined as the mean difference between the measured value on a group of test instruments and the estimated true value (as assayed by the reference method). Bias _{Ref} is determined as follows:
	$Bias_{Ref} = X_{ABL800 \ FLEX} - X_{Primary \ Reference \ method}$
	Bias _{ABL} is a relative bias between the ABL835 in FLEXMODE and the ABL735 in C195 μ L mode, and is determined as follows:
	$Bias_{ABL} = X_{ABL800 \text{ FLEX}} - X_{ABL735}$
Repeatability	Samples, assumed to be identical, repeatedly measured on one analyzer will not necessarily yield identical results. The degree of variation in the results is a measure of the repeatability of the analyzer.
	The repeatability is obtained from repeated measurements within a short interval of time using:
	• The same instrument and location
	• The same measurement procedure
	• Identical portions of the same sample
	• One operator per instrument
	The repeatability for each level is pooled for all test instruments and test days.

Definition of terms and test conditions, Continued

Reproducibility	Reproducibility is obtained from repeated measurements within several days using:
	Random instrument
	Random sample
	• Random operators.
	Reproducibility for each level is pooled for all test instruments and test days.
Total variation range	The total variation range is given as $\pm 2 \times S_X$, where S_X is the reproducibility.
Imprecision	Repeated measurements using one analyzer on samples assumed to be identical

will not necessarily yield identical results. The degree of variation in the results is a measure of the precision of the analyzer.

The following table describes the parameters used to characterize precision obtained via the performance tests on the ABL700 Series of analyzers.

Parameter	Description
\mathbf{S}_0	Repeatability
	This is a standard deviation obtained from repeated measurements within a short interval of time using:
	• The same instrument and location
	• The same measurement procedure
	• Identical portions of the same sample
	• One operator per instrument
	S_0 for each level is pooled for all test instruments and test days.
S _D	Day-to-day variation
	This is a standard deviation obtained from repeated measurements over all test days.
	Includes contributions from differences in calibration states of the analyzers throughout the test days.
S _{ABL}	Uncertainty of bias on a random instrument
	S_{ABL} is used for repeated determinations on one sample. This standard deviation includes the inter-instrument variations, sample variations, and uncertainties from standard solutions and reference methods.
S _X	Uncertainty of bias on a random instrument for a single measurement
	S_X is a standard deviation which includes S_{ABL} , S_D and S_0 .

Definition of terms and test conditions, Continued

Test conditions

Test conditions to determine $bias_{ABL}$, repeatability and total variation for pH, pCO_2 , pO_2 , cCa^{2+} , cCl^- , cK^+ , cNa^+ , cGlu, cLac, ctHb were as follows:

Item	Description
Reference analyzers	5 ABL735 with AutoCheck module were used as a reference. The C195 mode was used as a reference for all measured parameters.
Primary reference methods	As specified for each parameter further in this chapter.
Analyzers and test modes	5 ABL835, 3 ABL830, and 3 ABL805 were tested over 11 days in the following modes:
	• Syringe: \$195, \$165, \$95, \$85
	• Capillary: FLEXMODE, C95, C85, C55, C35 OXI, C35 MET.
Blood samples	Heparinized blood samples from healthy, voluntary donors.
	11 Blood pools were prepared to cover test ranges for all measured parameters.
Blood measurements	The measurements were performed by different operators.
Calibration solution and gases	All calibration solutions and gases used for the tests are traceable to Primary Reference Standards.
	Traceability certificates for the ABL800 FLEX calibration solutions and gases are found at the end of chapter 7: Solutions.
Experimental	Ambient temperature: 22 – 25 °C
conditions	Relative humidity: $30 - 50$ %.

NOTES:

- The solutions used in the performance tests are those recommended by Radiometer. Performances using other solutions cannot be guaranteed.
- The performance tests are performed under conditions where the analyzers are not influenced by electromagnetic fields.

Performance test results – chart description

Modes

Tests were performed in the following modes:

Mode	Syringe	Capillary
Macro	S195, S165	FLEXMODE ABL835 (no message) FLEXMODE ABL805 (no message)
Micro	S95, S85	C95, C85, C55, C35 OXI, C35 MET; FLEXMODE ABL830 (no message) FLEXMODE (message 869) FLEXMODE (message 870) FLEXMODE (message 871) FLEXMODE (message 872) FLEXMODE (message 873) FLEXMODE (message 874)

Bias_{ABL} chart description

The legend of Bias_{ABL} chart is given below:

Chart	Description
x - axis	The ABL735 mean values obtained as follows:
	To determine the best possible ABL735 reference value for each parameter of a specific sample, the measurements on 5 ABL735 are plotted as a function of time. A regression line is made to represent the best possible mean ABL735 measurement at a given time thus compensating the metabolism of the sample during repeated measurements on it.
y - axis	Bias in %; bias for pH in pH units.
	95 % statistical confidence range for bias in macromodes.
	95 % statistical confidence range for bias in micromodes.
N _{macro}	Number of measurements in macromodes.
N _{micro}	Number of measurements in micromodes.

Performance test results - chart description, Continued

Repeatability
chartRepeatability is presented as a plot of the coefficient of variation (CV %).
Contribution to variation, such as sample matrix and environmental conditions, are
not directly included, but compensated for by extending the repeatability values
shown in the chart.

Chart	Description
x - axis	The ABL800 FLEX mean value.
y - axis	Repeatability in %; repeatability for pH in pH units.
	Repeatability in macromodes.
	Repeatability in micromodes.
N _{macro}	Number of measurements in macromodes.
N _{micro}	Number of measurements in micromodes.

Total variation
chartTotal variation chart is presented as a difference plot against the regression line at
5 ABL735. The individual measurements are plotted directly.

Chart	Description
x - axis	The ABL735 mean values obtained as follows:
	To determine the best possible ABL735 reference value for each parameter of a specific sample, the measurements on 5 ABL735 are plotted as a function of time. A regression line is made to represent the best possible mean ABL735 measurement at a given time thus compensating the metabolism of the sample during repeated measurements on it.
y - axis	Total variation in %; total variation for pH in pH units.
	At least 95 % statistical confidence range for total variation in macromodes.
	At least 95 % statistical confidence range for total variation in micromodes.
0	Observations in macro-mode
x	Observation in micro-mode
N _{macro}	Number of measurements in macromode – see the next page.
N _{micro}	Number of measurements in micromode – see the next page.

Number of

Performance test results - chart description, Continued

Parameter	N _{macro}	N _{micro}	Total
pН	3334	421	3755
pCO_2	2768	397	3165
pO_2	282	2912	3194
$c\mathrm{K}^{\scriptscriptstyle +}$	422	1364	1786
$c\mathrm{Na}^{\scriptscriptstyle +}$	423	1362	1785
$c\mathrm{Ca}^{2+}$	407	1148	1555
$c\mathrm{Cl}^-$	426	1360	1786
<i>c</i> Glu	423	1825	2248
cLac	412	1829	2241
ctHb	415	3032	3447

The number of measurements in macro- and micromodes, and the total number of measurements during the test is listed below: measurements

Performance test results - pH

Primary
reference
methodCapillary-type glass pH electrode with a saturated calomel reference electrode and
a liquid junction saturated with KCl (BMSTM Mk2) [1,2].The calibration standards are traceable to the Primary Reference Standards for pH.

Bias_{REF}

The FLEXMODE on the ABL805/30/35 analyzers was tested:

pH	Bias _{REF}	Ν
7.0	-0.002	90
7.4	-0.002	90
7.7	-0.002	90

N = number of measurements on several analysers used for the test.

Bias_{ABL} – **blood** This bias is presented by the following chart: **samples**

Bias (pH)

Performance test results - pH, Continued

Repeatability Repeatability is presented by the following chart:

Performance test results – pCO₂

Primary Tonometry [3]. reference The gases used for tonometry are traceable to NIST certified Standard Reference Materials. Materials.

Bias_{REF}

The FLEXMODE on the ABL805/30/35 analyzers was tested:

pCO ₂ (mmHg)	Bias _{REF}	Ν
15	-0.11	60
40	-0.38	60
60	0.29	60
80	-0.20	60
150	-0.21	60

N = number of measurements on several analysers used for the test.

Bias_{ABL} – blood samples

This bias is presented by the following chart:

Performance test results – *p*CO₂, *Continued*

Repeatability Repeatability is presented by the following chart:

Repeatability (%)

Continued on next page

Total variation (%)

Performance test results – *p*CO₂, *Continued*

Bias and imprecision expired air samples The bias and imprecision for expired air samples are as follows*:

<i>p</i> CO ₂ (mmHg)	Bias ABL835/30/25/20/15/10/05
15	0.2
40	-0.2
60	-0.4
80	-0.2
150	1.6

pCO ₂ (mmHg)	S ₀	S _D	S _{ABL}	S _X
15	0.25	0.35	0.59	0.73
40	0.40	0.30	0.43	0.66
60	0.50	0.35	0.79	1.00
80	0.70	0.40	1.10	1.44
150	1.00	1.10	3.07	3.41

* The Expired air mode is unchanged in the ABL800 FLEX analyzers compared to the ABL700 Series and, consequently was not re-tested for the ABL800 FLEX analyzers.

Performance test results – pO_2

Primary	Tonometry [3].
reference method	The gases used for tonometry are traceable to NIST certified Standard Reference Materials.

Bias_{REF}

The FLEXMODE on the ABL805/30/35 analyzers was tested:

$pO_2 (mmHg)$	Bias _{REF}	Ν
15	0.47	60
50	-0.24	60
150	-0.45	60
250	-2.17	60
530	1.01	60

N = number of measurements on several analysers used for the test.

 $Bias_{ABL} - blood$

This bias is presented by the following chart:

Performance test results – pO₂, Continued

Repeatability Repeatability is presented by the following chart:

Repeatability (%)

ABL835 (mmHg)

Total variation Total variation is presented by the following chart:

Total variation (%)

Performance test results – *p*O₂, *Continued*

Bias and imprecision – expired air samples

 pO2, mmHg
 Bias ABL835/30/25/20/15/10/05

 15
 0.8

 40
 0.4

 130
 -0.4

 230
 -0.9

 570
 4.2

The bias and imprecision for expired air samples are as follows:

Imprecision:

<i>p</i> O ₂ mmHg	S ₀	S _D	S _{ABL}	S _x
15	0.3	0.3	1.2	1.3
40	0.3	0.3	1.0	1.1
130	0.3	0.3	0.7	0.8
230	2	2	3	4
570	5	5	13	15

15 ABL700 Series and ABL800 FLEX analyzers are tested over three days for all levels. Bias is determined against certified gases at sea level.

Performance test results – cK⁺

Primary NIST certified Standard Reference Material SRM 909b (human serum). reference methods

Bias_{REF}

The FLEXMODE on the ABL805/35 analyzers was tested using SRM 909b:

$c\mathbf{K}^{+}$ (mmol/L)	Bias _{REF}	Ν
3.424	-0.03	20
6.278	0.23	20

N = number of measurements on several analysers used for the test.

Bias_{ABL} – **blood** This bias is presented by the following chart: **samples**

Performance test results – cK⁺, *Continued*

Performance test results – cNa⁺

PrimaryNIST certified Standard Reference Material SRM 909b (human serum) andreferenceRadiometer specified standard serum material (specified using flame photometry).methodImage: Standard serum material (specified using flame photometry).

Bias_{REF}

The FLEXMODE on the ABL805/35 analyzers was tested:

cNa ⁺ (mmol/L)	Bias _{REF}	Ν
120.76*	-0.25	20
138.5**	-0.28	30

N = number of measurements on several analysers used for the test.

(*NIST certified Standard Reference Material

** Serum (Radiometer specified).

Bias_{ABL} – **blood** This bias is presented by the following chart: **samples**

ABL735 (mmol/L)

Performance test results – cNa⁺, Continued

Performance test results – *c*Cl⁻

Primary NIST certified Standard Reference Material SRM 909b (human serum). reference method

Bias_{REF}

The FLEXMODE on the ABL805/35 analyzers was tested using SRM 909b:

cCl [−] (mmol/L)	Bias REF	Ν
89.11	0.6	20
119.43	2.4	20

N = number of measurements on several analysers used for the test.

Bias_{ABL} – **blood** This bias is presented by the following chart: **samples**

Performance test results – *c*Cl⁻, *Continued*

Performance test results – cCa^{2+}

PrimaryThe calcium transfer standards were used. These are traceable to NIST SRM915referenceand have an ionic strength of 160.0 mmol per kg of water and pH 7.40 at 37 °C,methodsusing 1 mmol/L (37 °C) HEPES buffer.The standards were produced as indicated in [4].

Bias_{REF}

The FLEXMODE on the ABL805/35 analyzers was tested:

$c \operatorname{Ca}^{2+}(\operatorname{mmol/L})$	Bias _{REF}	Ν
0.4879	0.038	150
1.2700	0.025	150
2.5657	0.052	150

N = number of measurements on several analysers used for the test.

Bias_{ABL} – **blood** This bias is presented by the following chart: **samples**

ABL735 (mmol/L)

Performance test results – cCa²⁺, *Continued*

ABL735 (mmol/L)

Performance test results – cGlu

PrimarySpectrophotometry, using the hexokinase (HK) method recommended by NCCLSreference[5], measured on serum.method100 method

Bias_{REF}

The FLEXMODE on the ABL805/35 analyzers was tested:

<i>c</i> Glu(mmol/L)	Bias _{REF}	Ν
0.08	0.03	30
2.09	0.06	30
5.08	0.12	30
14.73	-0.02	30

N = number of measurements on several analysers used for the test.

Bias_{ABL} – **blood** This bias is presented by the following chart: **samples**

Performance test results – cGlu, Continued

Performance test results – cLac

PrimarySpectrophotometry using a lactate dehydrogenase (LDH) method, measured onreferenceserum [10].methods

Bias_{REF}

The FLEXMODE on the ABL805/35 analyzers was tested:

cLac (mmol/L)	Bias _{REF}	Ν
0.36	-0.08	30
2.06	0.12	30
8.3	-0.81	30
11.3	-0.62	30

N = number of measurements on several analysers used for the test.

Bias_{ABL} – **blood** This bias is presented by the following chart: **samples**

Performance test results – cLac, Continued

Repeatability Repeatability is presented by the following chart:

Performance test results – ctHb

Primary	HiCN method recommended by NCCLS [6].
reference	
method	

Bias_{REF}

The FLEXMODE on the ABL830/35 analyzers was tested:

ctHb (mmol/L)	Bias _{REF}	Ν
15 (SAT0)	0.32	145
7 (SAT100)	0.04	145
15 (SAT100)	0.37	145
25 (SAT100)	0.97	145

N = number of measurements on several analysers used for the test.

Bias_{ABL}

This bias is presented by the following chart:

Performance test results – ctHb, Continued

Repeatability Repeatability is presented by the following chart:

ABL800 FLEX (mmol/L)

Total variation Total variation is presented by the following chart:

Total variation (%)

Performance test results - oximetry

Explanation The optical system is unchanged in the ABL800 FLEX analyzers compared to the ABL700 Series. Test of *c*tHb on the ABL800 FLEX analyzers has been conducted (results given on pages 5-29 to 5-30). As the other oximetry parameters (sO_2 , FO_2 Hb, FCOHb, FMetHb, FHHb, FHbF) are derived from *c*tHb, these parameters have not been re-tested; the information and results below are from the ABL700 Series.

PrimaryThe reference method established for the oximetry parameters uses modifiedreferenceABL520 analyzers as the reference instruments. The ABL520 analyzers have beenmethodvalidated and their performance specifications determined according to primary
reference methods.

The modified ABL520 analyzers are used in accordance with IFCC's recommendations for traceability of reference methods.

The reference methods used for the oximetry parameters on the ABL520 analyzers are those presented below.

Parameter	Primary reference method
sO ₂	Tonometry: whole blood is tonometered with a gas mixture containing 94.4 $\%$ O ₂ and 5.6 $\%$ CO ₂ .
FHHb	The standard is blood ($ctHb = 13 - 15 \text{ g/dL}$) treated with dithionite.
FCOHb	Gas chromatography. The standards are carbon monoxide mixtures with atmospheric air, whose purity is validated in accordance with NIST SRM 1678 (50 ppm CO in N_2).
FMetHb	Spectrometry, modified Evelyn-Malloy method [7].
FHbF	Alkali denaturation method [8]. Corresponds to NCCLS guideline [9].

Test conditions
for oximetry
parameters

Test	Description
Reference	To verify that the correction constants have been accurately determined, 10 analyzers with all parameters available are tested in C195 mode against the reference methods.
	Each parameter is tested on 3-6 levels over at least 3 days, with 5 repetitions each day.
	(5 new analyzers with all parameters available were tested against the reference methods for <i>F</i> HbF).
	Bias for each parameter in the C195 measuring mode against the reference method is determined.

Test conditions for oximetry parameters (continued)

Test	Description
Verification	6-10 ABL700 Series analyzers are tested over at least 2 days for all levels. Bias for the given mode is calculated as difference compared to the C195 µL mode.
	Bias against the reference method is determined as follows:
	Bias = bias against $C195 + C195$ bias against reference method.
	The following parameters: sO_2 , <i>F</i> COHb, <i>F</i> MetHb and FO_2 Hb, are measured directly against the reference built in the analyzer, and these parameters are independent of the reference method.
Reduced verification	6 - 10 new analyzers are used over at least 1 day for selected levels.
	Bias for the tested mode is calculated as follows:
	Bias = bias against C195 + C195 bias against reference method.
	Modes which are not tested are described as "N/A".
Simple verification	6-10 analyzers are tested at one extreme level over 1 day. Bias is not determined; bias values for the modes with similar wet section programs are used.

The measuring modes were tested as follows:

Test	Analyzer	Mode
Reference	ABL735/25/15	C195
Verification	ABL735/25/15	S195, S95, S85, C95, C55, C35 MET, C35 OXI

Bias:

Performance test results - oximetry, Continued

sO₂ - macromodes

sO ₂ (%)		ABL835	ABL830/20/10	
ctHb (g/dL)	sO ₂ (%)	S195	FM*	S85
15	0	0.00	0.05	-0.02
7	100	0.01	0.22	N/A
15	100	0.01	-0.08	0.00
25	100	0.00	-0.29	N/A

* FM = FLEXMODE (no message) corresponding to C195 mode on the ABL735/25/15.

Imprecision:

Bias:

ctHb (g/dL)	sO ₂ (%)	S ₀	S_D	S _{ABL}	S _X
15	0	0.05	0.05	0.25	0.30
7	100	0.10	0.10	0.25	0.30
15	100	0.05	0.10	0.25	0.30
25	100	0.05	0.10	0.30	0.35

sO₂ micromodes

sO	2		ABL835/25/15			ABL830/20/10			
ctHb (g/dL)	sO2 (%)	S95	C95	S85	C55	C35	FM*	C55	C35
15	0	-0.04	-0.02	-0.02	-0.03	-0.03	N/A	-0.03	-0.03
7	100	-0.10	-0.19	N/A	-0.22	-0.10	N/A	-0.22	-0.10
15	100	-0.10	-0.16	0.00	-0.16	-0.10	-0.05	-0.16	-0.10
25	100	-0.10	-0.17	N/A	-0.14	-0.09	N/A	-0.14	-0.09

* FM = FLEXMODE (no message) corresponding to C195 mode on the ABL735/25/15.

Imprecision:

ctHb (g/dL)	sO ₂ (%)	\mathbf{S}_{0}	SD	S _{ABL}	Sx
15	0	0.05	0.05	0.25	0.30
7	100	0.10	0.10	0.25	0.30
15	100	0.05	0.10	0.25	0.30
25	100	0.05	0.10	0.30	0.35

Bias:

Performance test results - oximetry, Continued

FO₂Hb macromodes

FO ₂ Hb		ABL8	ABL830/20	
ctHb (g/dL)	FO ₂ Hb (%)	S195	FM*	S85
15	0	0.00	-0.04	-0.02
7	100	-0.07	N/A	N/A
15	100	-0.03	N/A	-0.15
25	100	-0.05	N/A	N/A

* FM = FLEXMODE (no message)

Imprecision:

ctHb (g/dL)	FO ₂ Hb (%)	S ₀	SD	S _{ABL}	S _X
15	0	0.05	0.05	0.25	0.30
7	100	0.25	0.20	0.50	0.60
15	100	0.15	0.15	0.45	0.50
25	100	0.10	0.10	0.40	0.45

FO₂Hb micromodes

FO ₂ Hb (%)		ABL835/25					
ctHb (g/dL)	FO ₂ Hb (%)	S95	C95	S85	C55	C35	
15	0	-0.04	-0.02	-0.02	-0.03	-0.03	
7	100	-0.47	-0.39	N/A	-0.48	-0.18	
15	100	-0.33	-0.40	-0.15	-0.39	-0.31	
25	100	-0.29	-0.46	N/A	-0.36	-0.33	

FO ₂	Hb	ABL830/20				
ctHb (g/dL)	FO ₂ Hb (%)	C85	C55	C35		
15	0	N/A	-0.03	-0.03		
7	100	N/A	-0.48	-0.18		
15	100	-0.16	-0.39	-0.31		
25	100	N/A	-0.36	-0.33		

FO ₂ Hb -	
micromodes	

Imprecision:

Bias:

micromodes	
(continued)	

ctHb (g/dL)	FO ₂ Hb (%)	S ₀	SD	SABL	Sx
15	0	0.05	0.05	0.25	0.30
7	100	0.25	0.20	0.50	0.60
15	100	0.15	0.15	0.45	0.50
25	100	0.10	0.10	0.40	0.45

FCOHb macromodes

FCOHb			ABL	835/25	ABL830/20	
ctHb (g/dL)	sO ₂ (%)	FCOHb (%)	S195	FM*	S85	
15	100	0	0.03	0.08	0.12	
7	100	20	N/A	0.47	N/A	
15	100	20	N/A	0.10	N/A	
25	100	20	N/A	-0.47	N/A	

* FM = FLEXMODE (no message)

Imprecision:

Bias:

ctHb (g/dL)	sO ₂ (%)	FCOHb (%)	S ₀	S _D	SABL	Sx
15	100	0	0.05	0.10	0.35	0.40
7	100	20	0.10	0.10	0.75	0.80
15	100	20	0.05	0.10	0.70	0.75
25	100	20	0.05	0.10	0.70	0.75

FCOHb -

micromodes

FCOHb			ABL835/25				
ctHb (g/dL)	sO2 (%)	FCOHb (%)	S95	C95	S85	C55	C35
15	100	0	0.10	0.10	0.12	0.08	0.08
7	100	20	N/A	N/A	N/A	N/A	N/A
15	100	20	N/A	N/A	N/A	N/A	N/A
25	100	20	N/A	N/A	N/A	N/A	N/A

Bias:

Performance test results - oximetry, Continued

FCOHb – micromodes (continued)

	FCOHb		ABL830/20			
ctHb (g/dL)	sO ₂ (%)	FCOHb (%)	FM*	C55	C35	
15	100	0	-0.02	0.08	0.08	
7	100	20	N/A	N/A	N/A	
15	100	20	N/A	N/A	N/A	
25	100	20	N/A	N/A	N/A	

* FM = FLEXMODE (no message)

Imprecision:

ctHb (g/dL)	sO ₂ (%)	FCOHb (%)	S ₀	SD	SABL	Sx
15	100	0	0.05	0.10	0.35	0.40
7	100	20	0.10	0.10	0.75	0.80
15	100	20	0.05	0.10	0.70	0.75
25	100	20	0.05	0.10	0.70	0.75

FMetHb macromodes

	FMetHb ABL835/25				ABL830/20
ctHb (g/dL)	sO ₂ (%)	FMetHb (%)	S195	FM*	S85
15	100	0	0.01	-0.03	0.06
15	100	20	N/A	0.10	N/A

* FM = FLEXMODE (no message)

Imprecision:

Bias:

ctHb (g/dL)	sO ₂ (%)	FMetHb (%)	S ₀	SD	SABL	Sx
15	100	0	0.10	0.10	0.25	0.30
15	100	20	0.05	0.10	0.35	0.40

Bias:

Performance test results - oximetry, Continued

*F*MetHb micromodes

FMetHb				А	BL835/2	5	
ctHb (g/dL)	sO ₂ (%)	FMetHb (%)	S95	C95	S85	C55	C35
15	100	0	0.13	0.14	0.06	0.16	0.14
7	100	20	N/A	N/A	N/A	N/A	N/A
15	100	20	N/A	N/A	N/A	N/A	N/A
25	100	20	N/A	N/A	N/A	N/A	N/A

	FMetHb			ABL830/20)
ctHb (g/dL)	sO ₂ (%)	FMetHb (%)	FM*	C55	C35
15	100	0	0.13	0.16	0.14
7	100	20	N/A	N/A	N/A
15	100	20	N/A	N/A	N/A
25	100	20	N/A	N/A	N/A

* FM = FLEXMODE (no message)

Imprecision:

ctHb (g/dL)	sO ₂ (%)	FMetHb(%)	S ₀	SD	SABL	S _X
15	100	0	0.10	0.10	0.25	0.30
15	100	20	0.05	0.10	0.35	0.40

FHHb macromodes

FH	Hb	ABL835/25		ABL830/20
FHHb (%)	ctHb (g/dL)	S195	FM*	S85
0	15	-0.01	0.08	-0.05

* FM = FLEXMODE (no message)

Imprecision:

Bias:

FHHb (%)	ctHb (g/dL)	S ₀	S _D	SABL	Sx
0	15	0.05	0.10	0.30	0.35

FHHb micromodes

FH	IHb		ABL835/25			A	BL830/2	20	
ctHb (g/dL)	FHHb (%)	S95	C95	S85	C55	C35	FM*	C55	C35
15	0	0.09	N/A	N/A	0.15	0.10	N/A	N/A	0.10

* FM = FLEXMODE (no message)

Imprecision:

Bias:

ctHb (g/dL)	FHHb (%)	S ₀	SD	SABL	Sx
15	0	0.05	0.10	0.30	0.35

FHbF – adult Bias (macromodes): blood

F	HbF	ABL835		ABL830
FHbF (%)	ctHb (g/dL)	S195	FM*	S85
0	10	3.3	3.3	3.3
0	15	5.5	5.5	5.5
0	20	5.6	5.6	5.6

* FM = FLEXMODE (no message)

Imprecision (macromodes):

FHbF (%)	ctHb (g/dL)	sO ₂ (%)	S ₀	S _D	S _{ABL}	Sx
0	10	100	4	4	5	8
0	15	100	2	3	7	8
0	20	100	2	2	10	11

FHbF – adult
blood
(continued)

Bias (micromodes):

FHbF ABL835				А	BL830				
ctHb (g/dL)	FHbF (%)	S95	C95	S85	C55	C35	FM*	C55	C35
1 0	0	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
1 5	0	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.5
2 0	0	5.6	5.6	5.6	5.6	5.6	5.6	5.6	5.6

* FM = FLEXMODE (no message)

Imprecision (micromodes):

ctHb (g/dL)	FHbF (%)	sO ₂ (%)	S_0	S _D	SABL	Sx
10	0	100	4	4	5	8
15			2	3	5	7
20			2	2	10	11

NOTES: a, b.

FHbF – fetal blood

Bias (macromodes):

FHbF **ABL835 ABL830** FHbF (%) S195 ctHb (g/dL) FM* 10 5.9 5.9 5.9 80 80 15 3.3 3.3 3.3 20 80 2.6 2.6 2.6

* FM = FLEXMODE (no message)

Imprecision (macromodes):

FHbF (%)	ctHb (g/dL)	sO ₂ (%)	S ₀	S _D	S _{ABL}	S _X
80	10	100	4	5	5	9
80	15	100	3	3	6	8
80	20	100	2	3	6	7

NOTES: a, b.

FHbF – fetal blood (continued)

Bias (micromodes):

FH	lbF	ABL835					ABL830		
ctHb (g/dL)	FHbF (%)	S95	C95	S85	C55	C35	FM*	C55	C35
10	80	5.9	5.9	5.9	5.9	5.9	5.9	5.9	5.9
15	80	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
20	80	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6

* FM = FLEXMODE (no message)

Imprecision (macromodes):

FHbF (%)	ctHb (g/dL)	sO ₂ (%)	S ₀	SD	SABL	Sx
80	10	100	4	5	6	9
	15		3	3	6	8
	20		2	3	6	7

NOTES: a, b.

Contribution to Imprecision Specifications from S7770 The following corrections should be geometrically added to S_{Inst} and S_X for the analyzer's wavelength calibrated with the S7770:

Parameter	Mode	Level	Correction (percentage point)
<i>c</i> tHb	Macromode	All	0
	Micromode	All	0
sO ₂	All	<i>s</i> O ₂ (100 %)	0.23
FO ₂ Hb	All	<i>F</i> O ₂ Hb (100 %)	0.15
FCOHb	All	<i>F</i> COHb (20 % and 0 %)	0.40
FHHb	All	<i>F</i> HHb (0 %)	0.23

NOTES:

- a. $pH = 7.4 \pm 0.1$. FHbF is adjusted with the pH sensitivity to a nominal pH=7.4. For further details please refer to the *Interference Tests* section for oximetry parameters.
- b. Specifications for imprecision are derived from worst-case values found during internal laboratory tests. 40 % relative is then added as a safety factor.

Performance test results - bilirubin

- **Explanation** As the optical system is unchanged in the ABL800 FLEX analyzers compared to the ABL700 Series, the specifications for bilirubin have not been re-established.
- **Field test results** The ABL735/30 performance specifications for bilirubin were made as a field test the purpose of which was to optimize bilirubin algorithm for neonatal blood samples.
 - For neonatal use: The bilirubin method has been evaluated on whole blood and plasma. The allowed analytical error is ± 10 % to satisfy average clinical requirements for bilirubin measurement [1,2,3,4,5]. This requirement is fulfilled for plasma. For whole blood the analytical error is slightly higher. The clinicians and clinical chemists have evaluated bilirubin measurement on whole blood, the conclusion being that the ABL735/30 has satisfactory performance and can substitute other bilirubin measuring methods.
 - For adult use: *Adult samples within reference range:*

The uncertainty in the bilirubin measurement on whole blood can, in some cases, exceed the level required to measure normal bilirubin levels for children older than 3 months and adults (bilirubin reference range 4-22 μ mol/L). In these cases it is recommended to measure bilirubin on plasma or serum.

Adult samples with an increased bilirubin level:

Adult field tests were typically performed on samples with 80 % of the total bilirubin in the conjugated form. For these highly conjugated samples the field tests showed a negative bias of 7 % on both plasma and whole blood samples.

The patient samples represented typical variations in *c*tBil, *c*tHb, *s*O₂, pH and MCHC values.

A Hitachi calibrated with NIST SRM 916a standards was used as a reference. ctBil was measured in μ mol/L. Each field test place had its own ABL735.

Performance test results - bilirubin, *Continued*

Pos.	Field test	Туре	Ν	Slope	Inter-	\mathbf{R}^2	$\mathbf{S}_{\mathbf{y}\mathbf{x}}$	Range
	place				cept		µmol/L	µmol/L
					µmol/L			
1	А	Plasma,	46	1.026	0.0	0.9914	5.1	18 - 258
2	В	neonatal	56	0.986	-1.3	0.9939	5.8	10 - 334
3	D		4	1.014	-1.4	0.9984	4.5	22 - 236
4	Е		47	0.945	1.2	0.9937	5.1	4 - 253
5	D	Plasma,	16	0.950	-0.5	0.9977	5.2	18 – 313
6	В	adult	59	0.924	1.4	0.9981	3.8	2 - 366
7	F		52	0.904	5.6	0.9932	12.0	4 - 635
			45 (a)	0.942	2.6	0.9941	5.3	4 - 300
8	А	Blood,	46	1.075	9.6	0.9661	10.7	18 – 258
9	В	neonatal	100	1.057	-1.6	0.9819	12.0	3 – 297
10	D		32	1.000	-5.6	0.9715	14.4	3 - 254
11	С		52	0.993	-5.0	0.9790	11.3	6 - 309
12	Е		47	1.019	-10.2	0.9827	9.5	4 - 253
13	D	Blood,	18	0.950	-6.8	0.9974	5.6	18 – 313
14	В	adult	55	0.909	3.2	0.9974	4.6	2 - 366
15	F		25	0.939	4.9	0.9967	10.0	21 - 635

Field test results The field test results are given below. *(continued)*

Regression table: Regression results from field tests. N = #samples, S_{yx} is standard deviation about regression line.

NOTE: (a) Datasubset excluding samples above 300 µmol/L.

plot

Performance test results - bilirubin, Continued

Actual field test from a neonatal critical care hospital using whole blood. Values are in µmol/L.

The same data as above but depicted in a Bland-Altman plot below.

Lines indicate Mean, Mean+2SD and Mean-2SD. Values are in µmol/L. Difference = ABL835 – Hitachi,NIST.

Performance test results - bilirubin, Continued

ImprecisionThe following parameters are used to describe performance of the ABL835/30parametersanalyzers for bilirubin measurements.

- S₀: Repeatability. Measurement short time interval variation on the same sample.
- S_D: Day-to-day variation
- S_T: Patient-to-patient variation
- S_I: ABL-to-ABL instrumental variation
- S_{ABL}: ABL uncertainty. Variation including S_T, S_I and reference uncertainty
- S_X : Reproducibility. Total variation including S_0 , S_D and S_{ABL}

Macromodes: 195 µL and 85 µL from syringe and capillary:

The above field test regression statistics S_{yx} include variations from S_0 , S_D and S_T .

Performance test results for bilirubin

ctBil (µmol/L)	ctHb (g/dL)	sO ₂ (%)	S ₀	S _D	ST	SI	S _{ABL}	S _X
≈0	Plasma		1.1	1.4	2.2	0.4	2.3	2.9
≈0	10	100	1.9	3.1	4.0	3.2	5.1	6.3
≈0	15	100	2.3	2.9	7.4	5.5	9.2	9.9
≈0	20	100	3.4	2.6	10.9	13.0	17.0	17.5
≈200	Plasma		1.3	1.7	3.1	4.7	7.4	7.7
≈200	10	100	2.4	4.4	5.8	6.6	10.1	11.3
≈200	15	100	2.6	3.7	8.5	9.3	13.6	14.4
≈200	20	100	4.2	5.0	12.1	15.4	20.4	21.4
≈400	Plasma		1.7	2.5	4.8	9.3	12.0	12.3
≈400	10	100	3.5	6.8	9.3	12.0	16.5	18.2
≈400	15	100	3.4	5.3	11.4	15.9	20.8	21.7
≈400	20	100	6.0	8.8	15.0	21.0	27.1	29.2

Notes: a, b, c

Performance

Performance test results - bilirubin, Continued

test results for	(capillary)	(capillary):									
(<i>continued</i>)	ctBil (µmol/L)	ctHb (g/dL)	sO ₂ (%)	S ₀	SD	ST	SI	S _{ABL}	S _X		
	≈0	Plasma		1.1	1.4	2.2	0.4	2.3	2.9		
	≈0	10	100	1.9	3.1	4.0	3.2	5.1	6.3		
	≈0	15	100	2.3	2.9	7.4	5.5	9.2	9.9		
	≈0	20	100	3.4	2.6	10.9	13.0	17.0	17.5		
	≈200	Plasma		2.0	1.7	2.9	3.9	6.8	7.3		
	≈200	10	100	3.7	3.9	6.0	5.6	9.6	11.0		
	≈200	15	100	4.4	4.2	9.3	7.9	13.2	14.6		
	≈200	20	100	5.6	5.9	13.0	16.3	21.6	23.1		
	≈400	Plasma		3.5	2.5	4.3	7.8	10.6	11.4		
	≈400	10	100	6.7	5.7	9.9	9.6	15.2	17.6		
	≈400	15	100	7.9	6.7	13.5	12.5	19.7	22.3		
	≈400	20	100	9.5	10.9	17.8	23.6	30.7	33.9		

Micromodes: 95 μ L (syringe and capillary), 55 μ L (capillary) and 35 μ L (capillary):

Notes: a, b, c

NOTES:

- a. Adult/fetal blood, $pH = 7.4 \pm 0.1$, normal MCHC and albumin variation, Spiked with unconjugated bilirubin.
- b. *c*tBil specification at level 200 µmol/L is interpolated from the measured specifications at 0 and 400 µmol/L.
- c. The performance specifications apply to measurements performed using CLINITUBES with clot catchers and mixing wire from Radiometer.

References

- 1. Fraser CG. The application of theoretical goals based on biological variation data in proficiency testing. Arch Pathol Lab Med 1988; 112: 402-15.
- Ehrmeyer SS, Laessig RH, Leinweber JE, Oryall JJ. 1990 Medicare/CLIA final rules for proficiency testing: minimum intralaboratory performance characteristics (CV and bias) needed to pass. Clin Chem 1990; 36, 10: 1736-40.

Performance test results - bilirubin, Continued

References	3.	Fraser CG, Petersen PH, Ricos C, Haeckel R. Proposed quality specifications
(continued)		for the imprecision and inaccuracy of analytical systems for clinical chemistry.
		Eur J CLin Chem Clin Biochem 1992; 30: 311-17.

- 4. Westgard JO, Seehafer JJ, Barry PL. Allowable imprecision for laboratory test based on clinical and analytical test outcome criteria. Clin Chem 1994; 40, 10: 1909-14.
- 5. Vanderline RE, Goodwine J, Koch D, Scheer D, Steindel S, Cembrowski G. Guidelines for providing quality stat laboratory services. 1987 Laboratory Quality Assurance Commitee.

Additional information about FLEXMODE

Introduction

With the FLEXMODE

Sample volume $< 55 \ \mu$ L:

- Varying sample volumes can be introduced to obtain a given parameter profile, and
- Two different parameter profiles can be reported for the same sample volume as the sample volume intervals overlap one another.

See the ABL800 FLEX Operator's Manual, chapter 4, page 4-3, for an overview of sample volume intervals and parameter profiles.

Most of the variation contributed by the difference in sample volume and parameter profile is included in the performance test results (bias, repeatability and imprecision) given in this chapter. Special tests with emphasis on extreme scenarios were conducted. The following scenarios were studied:

- Bias and repeatability for minimum and maximum sample volumes
- Bias and repeatability for parameter profiles with same sample volume.

These special studies were conducted for each of the individual parameter profiles. The parameters with the variation exceeding the Performance Characteristics are listed below.

Parameter	Values	Bias	Repeatability
рН	7.15	0.015	0.005
	7.40	0.013	0.005
<i>p</i> CO ₂ (mmHg)	29	1.0	0.9
	80	-2.9	2.6
<i>p</i> O ₂ (mmHg)	130	3.0	3.9
	230	-3.7	3.6

Worst-case observations

Interference tests

pH/blood gas The following interference results are found for the pH and blood gas electrodes:

Substance	Test Conc.	Interference on <i>p</i> O ₂ Electrode
Halothane	3 %	5 % increased sensitivity

Intralipid (20 % solution) in a concentration greater than 4 % (the final Intralipid level being 0.8 %) will give interference on pH measurements.

Electrolytes The following interference results are found for the electrolyte electrodes:

		Interference on					
Substance	Test Conc.	cK ⁺ (4 mmol/L level)	cNa ⁺ (150 mmol/L level)	cCa ²⁺ (1.25 mmol/L level)	cCl ⁻ (110 mmol/L level)		
Li ⁺	4 mmol/L	0	0	0			
\mathbf{K}^+	12 mmol/L		-1	-0.01			
Na ⁺	100 - 180 mmol/L	0.1 to -0.1					
$\mathrm{NH_4}^+$	1 mmol/L	0	0				
Ca ²⁺	5 mmol/L		0				
Mg^{2+}	5 mmol/L	0	0	0.05			
Br ⁻	10 mmol/L				41		
F^-	1 mmol/L				0		
Ι-	3.0 mmol/L				30-90		
ClO_4^-	1.5 mmol/L				8-30		
HCO ₃ ⁻	25-50 mmol/L				0.1 mmol/L Cl ⁻ per mmol/L HCO ₃ ⁻		
Lactate	10 mmol/L				0		
Acetyl- salicylic acid	3.0 mmol/L				2		

Electrolytes (continued)

		Interference on					
Substance	Test Conc.	cK ⁺ (4 mmol/L level)	cNa ⁺ (150 mmol/L level)	cCa ²⁺ (1.25 mmol/L level)	cCl⁻ (110 mmol/L level)		
Ascorbic acid	1.0 mmol/L				0		
$pH \leq 7.2$	7.2	0	0	0.01	-1		
pH ≥ 7.6	7.6	0	0	-0.01	1		

Sulphide will give erroneously high cCl^{-} results.

Metabolites The following interference results are found for the metabolite electrodes:

		Interference on	
Substance	Test Conc. (mmol/L)	<i>c</i> Glucose (4.0 mmol/L level)	<i>c</i> Lactate (1.5 mmol/L level)
Acetoacetic acid	2	< 0.1	< 0.1
Acetylsalicylic acid	3	< 0.1	< 0.1
Ascorbic acid	2	< 0.1	< 0.1
Bilirubin (conjugated)	0.46	< 0.1	< 0.1
Bilirubin (unconjugated)	0.34	< 0.1	< 0.1
Chlorpromazine HCl	0.2	< 0.1	< 0.1
Citrate	50	-0.37	0.19
Creatinine	3	< 0.1	< 0.1
D-glucose	67		< 0.1
Dopamine HCl	1.0	< 0.1	< 0.1
EDTA	3	< 0.1	< 0.1
Ethanol	79	< 0.1	< 0.1
Fluoride	50	-0.36	< 0.1
Galactose	3.3	up to 1.88*	
Glucosamine	2	up to 1.06*	

Metabolites (continued)

		Interferer	ice on
Substance	Test Conc. (mmol/L)	<i>c</i> Glucose (4.0 mmol/L level)	<i>c</i> Lactate (1.5 mmol/L level)
Glycolic acid	1	< 0.1	Interference
Heparin	8000 IU/dL	< 0.1	< 0.1
Ibuprofen	2	< 0.1	< 0.1
Intralipid		< 0.1	< 0.1
Lactic acid	12	< 0.1	
Maltose	5	up to 0.4*	
Mannose	1	up to 0.4*	
Oxalate	90	-0.47	0.14
Paracetamol-4- acetamidophenol	2	< 0.1	< 0.1
Pyruvate	2	< 0.1	< 0.1
Salicylic acid	4	< 0.1	< 0.1
Thiocyanic acid	24	Interference	Interference
Urea	84	< 0.1	< 0.1
Uric acid	1.5	< 0.1	< 0.1
Xylose	1	up to 0.34*	

* Values determined at cGlu = 0 mmol/L. Interference at cGlu 4.0 mmol/L is expected to be the same.

	Δc Lactate % at :			
Hematocrit %	5 mmol/L level	15 mmol/L level		
0	0.7 %	0.7 %		
45	0.0 %	0.0 %		
60	-0.5 %	-2.0 %		
75	-2.2 %	-5.0 %		

Oximetry
parametersThe substances against which the oximetry parameters (ctHb, sO_2 , FO_2Hb ,
FCOHb, FMetHb, FHHb, FHbF) and ctBil were tested for interference are given
in the table below:

(SAT100 blood reference test sample: *c*tHb=15 g/dL, *s*O₂=100 %, *F*COHb=0.7 %, *F*MetHb=0.5 %, *c*tBil=0, pH=7.4. Parameter sensitivity from the influence on the absorbance spectrum from various substances.)

		Change on							
Substance	Test conc.	<i>c</i> tHb (g/dL)	sO ₂ (%)	<i>F</i> O₂Hb (%)	<i>F</i> COHb (%)	<i>F</i> MetHb (%)	FHHb (%)	<i>F</i> HbF (%)	ctBil (µmol/L)
Intralipid	4 Vol % ^{e)}	-0.5	0.1	-1.3	0.5	0.9	-0.1	11	0 4 ^{b)}
Intralipid	2 Vol % ^{f)}	-0.4	0.1	-0.3	0.3	0.1	-0.1	11	7 2 ^{b)}
HbF ^{a), c)}	20 %	-0.02	1.17	0.04	0.73	0.37	-1.14	0	-14
SHb	10 %	0	-1.0	0.9	-0.1	0.1	-0.9	Not	tested
рН	7.1	-0.5	-0.5	-0.2	-0.4	0.1	0.5	-19	0
	7.9	-0.6	0.6	-0.5	1.0	0.1	-0.6	13	-5
Cardio Green ^{c)}	5 mg/L	-0.16	0.29	1.14	0.07	-0.93	-0.29	-5	-20
Evans Blue ^{c)}	5 mg/L	-0.04	0.14	0.28	-0.20	-0.20	0.14	-5	5
Betacarotene in plasma ^{c)}	3.7 μmol/L	0.0	-0.02	0.03	-0.01	-0.04	0.02	0.1	-0.2
Patent Blue V c)	10 mg/L	-0.16	0.39	0.86	-0.47	0.00	-0.38	-21	38
Methylene Blue c)	30 mg/L	-0.7	-3.4	5.6	-3.0	-6.2	3.6	-37	-25
HiCN ^{c)}	0.11 mmol/L	0.26	-1.5	-3.0	-0.5	0.5	1.5	24	47
MCHC ^{c), d)}	320 g/L	No interference				-12			
newborn range	350 g/L	17			17				
Sedimentation rate	100 arb. Units	$\leq \pm 0.5$			No inte	rference			Not tested

Notes: a) If function "Correction for HbF levels less than 20 %" is activated, the change is 0 for all parameters.

- b) Plasma sample.
- c) Calculated value from mathematical superposition of measured pure interference spectrum on measured reference spectrum.
- d) $ctBil = 400 \mu mol/L$.
- e) Intralipid (20 % solution) at 4 Vol % gives final test level of 0.8 %.
- f) Intralipid (20 % solution) at 2 Vol % gives final test level of 0.4 %.

There is no interference from fetal hemoglobin (HbF) when the analyzer applies HbF correction. There is no interference from bilirubin (conjugated/unconjugated) up to 1000 $\mu mol/L.$

Contribution to imprecision specifications from HbF correction The process of HbF correction introduces additional noise compared to measurement on adult samples. The following tables list the extra contribution which must be added geometrically to the imprecision specifications for adult samples in order to obtain the imprecision specifications for fetal samples (also for adult samples if function "Correction for HbF levels less than 20 %" is activated).

 $S_{fetal} = \sqrt{S_{adult}^2 + S_{HbF}^2}$; geometrical addition of imprecision

where S_{fetal} is the calculated fetal imprecision; S_{adult} is the corresponding adult imprecision; S_{HbF} is the extra contribution from HbF correction which is listed in the following tables.

	\mathbf{S}_0	S _D	\mathbf{S}_{ABL}	S _X
<i>s</i> O ₂ %	0.15	0.20	0.19	0.31
FHHb %	0.14	0.19	0.19	0.30
FO ₂ Hb %	0.01	0.01	0.01	0.01
FCOHb %	0.09	0.13	0.12	0.20
FMetHb %	0.05	0.06	0.06	0.10

HbF correction contribution to 10 g/dL SAT100 fetal sample:

HbF correction contribution to 15 g/dL SAT100 fetal sample:

	\mathbf{S}_0	S _D	$\mathbf{S}_{\mathrm{ABL}}$	S _X
<i>s</i> O ₂ %	0.09	0.12	0.29	0.33
FHHb %	0.09	0.11	0.28	0.32
FO ₂ Hb %	0.00	0.00	0.01	0.01
FCOHb %	0.06	0.07	0.18	0.21
FMetHb %	0.03	0.04	0.09	0.11

HbF correction contribution to 20 g/dL SAT100 fetal sample:

	\mathbf{S}_0	S _D	$\mathbf{S}_{\mathrm{ABL}}$	S _X
<i>s</i> O ₂ %	0.09	0.12	0.20	0.25
FHHb %	0.09	0.11	0.19	0.25
FO ₂ Hb %	0.00	0.00	0.01	0.01
FCOHb %	0.06	0.07	0.13	0.16
FMetHb %	0.03	0.04	0.06	0.08

<i>F</i> HbF sensitivity for pH changes	<i>F</i> HbF is sensitive to pH deviations from the nominal value of pH = 7.4. If pH is converted into cH^+ (hydrogen ion concentration), the relationship between the changes in cH^+ and <i>F</i> HbF is linear as seen from the following equation:					
	$\Delta FHbF = -0.48 \ \%/(nmol/L) \times (cH^+ - 40 \ nmol/L)$					
	where $pH = 7.4$ corresponds to $cH^+ = 40$ nmol/L.					
	<i>EXAMPLE:</i> $pH = 7.25$ corresponds to $cH^+ = 56$ nmol/L. Then:					
	$\Delta FHbF = -0.48 \times (56 - 40) = -7.7 \%.$					
<i>ct</i> Bil sensitivity for MCHC variations	MCHC (Mean Corpuscular Hemoglobin Concentration) is used to estimate hematocrit, Hct, which is used in the <i>c</i> tBil measurement. MCHC is an average Hb concentration in the red blood cell (RBC). If the RBC volume decreases, MCHC increases. If a RBC has iron deficit, MCHC decreases.					
	Hct is determined from <i>c</i> tHb as follows:					
	$Hct = \frac{ctHb}{MCHC}$					
	A standard value of 332 g/L is assumed for MCHC which gives					
	Hct = c tHb x 0.0301 if the unit for c tHb is g/dL.					
	MCHC can, however, deviate from this standard value as illustrated in the following table (see the next page).					
	Erythrocytometric values given for "apparently healthy" white and black subjects of different ages are taken from: "Geigy Scientific Tables, Physical Chemistry, Composition of Blood, Hematology, Somametric Data", CIBA-GEIGY, 1984; 3, 207.					

Interference tests, Continued

<i>ctBil sensitivity</i> for MCHC variations	Subjects	Age	Hct mean	Hct 95 % range	MCHC mean, g/L	MCHC 95 % range, g/L
(continued)	Men	Adults	0.47	0.39 - 0.55	340	310 - 370
	Women	Adults	0.42	0.36 - 0.48	330	300 - 360
	Boys	Newborn	0.59	0.53-0.65	330	320-340
		1 month	0.50	0.44-0.56	320	310-330
		3 months	0.45	0.39-0.52	330	320-340
		6 months	0.46	0.39-0.51	300	290-310
		9 months	0.45	0.39-0.52	280	270-300
		1 year	0.41	0.37-0.45	290	280-300
		2 years	0.40	0.36-0.47	300	280-310
		4 years	0.37	0.30-0.44	280	270-290
		8 years	0.41	0.37-0.45	290	280-300
		14 years	0.41	0.36-0.46	300	290-310
	Girls	Newborn	0.58	0.51-0.65	340	330-350
		1 month	0.49	0.42-0.56	320	310-330
		3 months	0.44	0.39-0.51	330	320-340
		6 months	0.44	0.39-0.50	320	310-330
		9 months	0.43	0.37-0.50	300	290-310
		1 year	0.43	0.37-0.49	300	290-310
		2 years	0.43	0.36-0.50	300	290-310
		4 years	0.43	0.36-0.51	280	270-290
		8 years	0.40	0.36-0.46	280	270-290
		14 years	0.40	0.36-0.47	290	280-300

If \triangle MCHC is defined as \triangle MCHC = 332 g/L – MCHC, then the contribution to the relative error on the *c*tBil measurement is as follows:

Δc tBil _	Hct	ΔMCHC
ctBil _	1 - Het	MCHC

A worst-case example, using 95 % confidence values:

A newborn girl with Hct = 0.58, MCHC = 350 g/L and ctBil = 400 μ mol/L. ctHb may be derived as Hct x MCHC = $0.58 \times 350 \text{ g/L} = 20.3 \text{ g/dL}$ (reference range is 18.0 – 21.0 g/dL).

ctBil sensitivity
for MCHC
variations
(continued) $\frac{\Delta ctBil}{ctBil} = -\frac{0.58}{1-0.58} \times \frac{-18}{350} = +0.071$ And $\Delta ctBil = 0.071 \times 400 = 28 \ \mu mol/L.$ If the reference value for Hct is known, it is possible to correct the displayed ctBil
value, using the following equation:
 $ctBil(corrected) = ctBil(displayed) \times \frac{1-ctHb(displayed) \times 0.0301}{1-Hct(reference)}$ ctBil sensitivity
for pH changesctBil is slightly sensitive to pH deviations from the nominal value of pH = 7.4.

The following table shows the changes in Δc tBil compared to the value at pH = 7.4.

Sample Type	<i>c</i> tHb g/dL	Nominal ctBil µmol/L	Δ <i>c</i> tBil (7.4→7.1) µmol/L	ΔctBil (7.4→7.9) µmol/L
Adult/fetal plasma	0	0	3	0
Adult blood, $sO_2 = 100 \%$	15	0	0	-5
Fetal blood, $sO_2 = 100 \%$	15	0	-13	4
Adult/fetal plasma spiked with unconjugated bilirubin	0	400	-2	-1
Adult/fetal plasma spiked with conjugated bilirubin	0	400	9	-11
Adult blood spiked with un- conjugated bilirubin, $sO_2 = 100 \%$	15	400	10	-26
Fetal blood spiked with un- conjugated bilirubin, $sO_2 = 100 \%$	15	400	-4	-16
Adult blood spiked with conjugated bilirubin, $sO_2 = 100 \%$	15	400	14	-35
Fetal blood spiked with conjugated bilirubin, $sO_2 = 100 \%$	15	400	0	-26

References

List of references

- 1. Kristensen HB, Salomon A, Kokholm G. International pH scales and certification of pH.
- Definition of pH scales, standard reference values, measurement of pH and related terminology (Recommendations 1994). Pure and Appl Chem 1985; 57, 3: 531 - 42.
- 3. Burnett RW, Covington AK, Maas AHJ, Müller-Plathe O *et al.* J Clin Chem Clin Biochem 1989; 27: 403 08.
- 4. IFCC reference methods and materials for measurement pH, gases and electrolytes in blood. Scand J Clin Lab Invest 1993; 53, Suppl 214: 84 94.
- 5. Glucose. NCCLS Publication RS1-A. Villanova, Pa: NCCLS, 1989.
- Reference and selected procedures for the quantitative determination of hemoglobin in blood. Approved Standard (3rd edition), NCCLS Publication H15-2A. Villanova, Pa: NCCLS, 2000.
- Evelyn K, Malloy H. Microdetermination of oxyhemoglobin, methemoglobin and sulfhemoglobin in a single sample of blood. Biological Chem 1938; 126: 655 - 62.
- 8. Kristoffersen K. An improved method for the estimation of small quantities of alkali-resistant hemoglobin in blood. Scand J Clin Lab Invest 1961; 13: 402.
- 9. Quantitative measurement of fetal hemoglobin using the alkali denaturation method. Approved Guideline. NCCLS Publication H13-A 1989; 9, 18.
- 10. Begmeyer. Methods of enzymatic analysis. 3rd ed., Verlag Chemie Deerfield Beach 1984; 6: 582-88.

6. Parameters

Overview

Introduction	The measured, input, and derived parameters are described in this chapter.			
Contents	This chapter contains the following topics.			
	General information	6-2		
	Measured parameters	6-5		
	Input parameters	6-14		
	Derived parameters	6-17		
	Units and numerical format of derived parameters	6-22		
	List of equations	6-27		
	Oxyhemoglobin dissociation curve (ODC)	6-43		
	Conversion of units	6-48		
	Default values	6-50		
	Altitude correction	6-51		
	References	6-52		

General information

The Deep PictureTM The Deep Picture developed by Radiometer [1], (visit our website www.deeppicture.com) expands traditional pH and blood gas analysis by evaluating the capability of arterial blood to carry sufficient oxygen to tissues and to release it. It simplifies interpretation by dividing the process into three stages:

Stage	Description
Oxygen Uptake	Oxygen uptake in the lungs indicates whether the pulmonary gas exchange is efficient enough to oxygenate arterial blood.
	The uptake of oxygen in the lungs can be described by parameters in combination, primarily the arterial oxygen tension ($pO_2(a)$), fraction of O_2 in dry inspired air ($FO_2(I)$), and shunt fraction of
	perfused blood $(\dot{Q_s}/\dot{Q_t})$
	However other parameters may also be used, such as the difference in alveolar air and arterial blood oxygen tension $(pO_2(A-a))$.
Oxygen Transport	Oxygen transport reveals whether arterial blood contains sufficient oxygen.
	The oxygen concentration of arterial blood $(ctO_2(a))$ also termed oxygen content is determined by the concentration of total hemoglobin $(ctHb(a))$, the fraction of oxygenated hemoglobin $(FO_2Hb(a))$, and the arterial oxygen tension $(pO_2(a))$. Other parameters which should be known are the oxygen saturation $(sO_2(a))$ and the fractions of dyshemoglobins $(FCOHb(a)$ and FMetHb(a)).
Oxygen Release	Oxygen release describes the ability of arterial blood to release oxygen to the tissues.
	The release of oxygen from capillaries to tissues is determined by the oxygen tension gradient between the two. This release of oxygen is also influenced by the hemoglobin-oxygen affinity, which is indicated by the oxygen tension at 50 % saturation, $p50$.

Symbols

The symbols for the parameters are based on the principles described by Wandrup [2]. Each symbol consists of three parts, described below:

1. Quantity	A symbol in italics describing the quantity	<i>p</i> for pressure <i>c</i> for concentration <i>F</i> for fraction <i>V</i> for volume etc.
2. Component	An abbreviation of the component name	O ₂ for oxygen CO ₂ for carbon dioxide COHb for carboxyhemoglobin, etc.

General information, Continued

Symbols (continued)

3. (System) Specification of the system	B for blood P for plasma a for arterial blood \overline{v} for mixed venous blood A for alveolar air T for patient temperature
---	---

The parameters are listed by symbol in three groups: measured, input, and derived.

Ranges and

The following ranges are used:

limits

Range	Description
Measuring	The <i>measuring range</i> for a parameter is the range within which the analyzer is physically capable of measuring. The measuring range corresponds to the "range of indication" as defined in the "International vocabulary of basic and general terms in metrology (VIM).
Reportable	Is user-defined; is equal to or narrower than the measuring range. Can be selected for all measured and derived parameters.
Reference	"Reference ranges are valuable guidelines for the clinician, but they should not be regarded as absolute indicators of health and disease. Reference ranges should be used with caution since values for 'healthy' individuals often overlap significantly with values for persons afflicted with disease. In addition, laboratory values may vary significantly due to methodological differences and mode of standardization" [10].
	Ref. 10 has been the source for the reference ranges given in this section. In some cases the values are taken from other sources marked by their reference number.
	When possible the reference ranges for arterial blood have been listed. Reference ranges must be used with caution as they depend on a number of factors, such as sex, age, and normal physiological condition.

Critical limits are user-defined and can be entered into the analyzer software - see Chapter 3: Setup Programs (section Analysis Setup) in the Operator's Manual.

General information, Continued

Derived
parameters

Derived parameters are calculated according to the equations stated.

If	Then
the required measured or input values are unknown	default values are used, unless a measured parameter does not have a value or is outside the measuring range.
all values are known	the derived parameter is designated <i>calculated</i> and a 'c' is added to the result.
a default value is used	the derived parameter is designated <i>estimated</i> and an 'e' is added to the result.

If one or more default values have been used in the calculation, the result may deviate significantly from the true value. The deviation on "estimated" oxygen status parameters may become particularly significant if default values are used instead of measured blood oximetry data.

In some cases however, the default value is not accepted as the input for the calculation. This is because the actual values of the missing parameter may deviate significantly from the default value, thus making the estimation clinically inappropriate. If sO_2 cannot be measured due to severe errors, it will be calculated.

- Measured
parametersSome of the listed parameters are measured, depending on the analyzer
configuration. In these cases the equation given only applies if that parameter is
not directly measured by the analyzer.
- Sample type
 Unless otherwise stated, a parameter will be calculated or estimated irrespective of the choice on the Patient Identification screen: 'Arterial', 'Capillary', 'Venous', 'Mixed venous', or 'Not specified'. Some parameters however are defined for arterial samples only; they will be calculated only for sample types entered as 'Arterial' or 'Capillary'. The symbol for system (blood (B) or plasma (P)) is not stated in the equations unless it is important for the calculation.
- **Units** The units given for each parameter refer to the units available on the analyzer for that parameter.
- **Default values** The default values are listed in *Default Values* at the end of this chapter.

Measured parameters

General	The following is the used:			
mormation	m =	male		
	f =	female		
	Reference range	for adult's a	terial blood	
	Reference: [10] Tietz N Fundament Saunders C		NW, Logan NM. Reference ranges. In: Tietz NW, ed. cals of clinical chemistry. 3 rd ed. Philadelphia: WB Company 1987: 944-75.	
		(unless oth	erwise specified)	
рН				
P	Definition		Indicates the acidity or alkalinity of the sample.	
	Unit		-	
	Measuring ra	inge	6.300-8.000	
	Reference rat	nge	7.35-7.45 (m, f)	
$c\mathrm{H}^+$	Definition		Concentration of hydrogen ions in blood	
	Unit		nmol/L	
	Measuring ra	nge	10 0-501	
	Reference rai	nge	35.5-44.7 (m, f)	
pCO ₂	Is used both for blood and expired air samples.			
-	Definition		Partial pressure (or tension) of carbon dioxide in blood.	
			High and low pCO_2 values of arterial blood indicate blood hypercapnia and hypocapnia respectively.	
	Unit		mmHg; kPa; torr	

Measured parameters, Continued

pCO ₂ (continued)	Measuring range	mmHg; torr: 5.0-250			
()		kPa: 0.67-33.3			
	Reference range	mmHg: 35–48 (m); 32-45 (f)			
		kPa: 4.67-6.40 (m); 4.27-6.00 (f)			
	Conversion of units	p (kPa) = 0.133322 × p (mmHg)=0.133322 × p (torr)			
		$p \text{ (mmHg)} = p \text{ (torr)} = 7.500638 \times p \text{ (kPa)}$			
pO ₂	Is used for both blood a	Is used for both blood and expired air samples.			
	Definition	Partial pressure (or tension) of oxygen in blood.			
		High and low pO_2 values of arterial blood indicate blood hyperoxia and hypoxia, respectively.			
	Unit	mmHg; kPa; torr			
	Measuring range	mmHg; torr: 0.0-800			
		kPa: 0.00-107			
	Reference range	mmHg: 83-108 (m, f)			
		kPa: 11.07-14.40 (m, f)			
	Conversion of units	p (kPa) = 0.133322 × p (mmHg)=0.133322 × p (torr)			
		$p \text{ (mmHg)} = p \text{ (torr)} = 7.500638 \times p \text{ (kPa)}$			
Baro	Definition	Ambient barometric pressure ($p(amb)$).			
	Unit	mmHg; kPa; torr			
	Measuring range	mmHg; torr: 450-800			
		kPa: 60.0-106.7			
	Reference range	-			
	Conversion of units	p (kPa) = 0.133322 × p (mmHg)=0.133322 × p (torr)			
		$p \text{ (mmHg)} = p \text{ (torr)} = 7.500638 \times p \text{ (kPa)}$			

Measured parameters, Continued

ctHb	Definition	Concentration of total hemoglobin in blood.
		Total hemoglobin includes all types of hemoglobin: deoxy-, oxy-, carboxy-, met
	Unit	g/dL; g/L; mmol/L
	Measuring range	g/dL: 0.00- 27.7
		g/L: 0.0-277
		mmol/L: 0.00-17.2
	Reference range	g/dL: 13.5-17.5 (m); 12.0-16.0 (f)
		g/L: 135-175 (m); 120-160 (f)
		mmol/L: 8.4-10.9 (m); 7.4-9.9 (f)
	Conversion of units	ctHb (g/dL) = 1.61140 × c tHb (mmol/L);
		ctHb (g/L) = 16.1140 × c tHb (mmol/L);
		ctHb (mmol/L) = 0.62058 × c tHb (g/dL) = 0.062058 × c tHb (g/L)
	Default value:	9.3087 mmol/L, (15.0 g/dL or 150 g/L)
sO ₂	Can also be calculated.	
	Definition	Oxygen saturation, the ratio between the concentrations of oxyhemoglobin and the hemoglobin minus the dyshemoglobins.
	Unit	%; fraction
	Measuring range	%: 0.0-100.0
		Fraction: 0.000-1.000
	Reference range	%: 95-99 (m, f)
		Fraction: 0.95-0.99 (m, f)
		Continued on next next
sO ₂ (continued)	Reference:	Siggaard-Andersen O, Wimberley PD, Fogh-Andersen N, Gøthgen IH. Arterial oxygen status determined with routine pH/blood gas equipment and multi-wavelength hemoximetry: reference values, precision and accuracy. Scand J Clin Lab Invest 1990; 50, Suppl 203: 57-66. Available as AS106.
-----------------------------	------------	---
	Equation	The ODC is determined as described in equation for <i>Oxyhemoglobin Dissociation Curve</i> (points I and III).
		$sO_2 = \frac{S \times (1 - FMetHb) - FCOHb}{1 - FCOHb - FMetHb}$
		where
		S = ODC(P,A,T)
		$P = pO_2 + \frac{pO_2 \times FCOHb}{sO_2 \times (1 - FCOHb - FMetHb)}$
		$\mathbf{A} = \mathbf{a}$
		$T = 37.0 \ ^{\circ}\mathrm{C}$

FO ₂ Hb	Can also be calculated	l.
	Definition	Fraction of oxyhemoglobin in total hemoglobin in blood.
	Unit	%; fraction
	Measuring range	%: 0.0-100.0
		Fraction: 0.000-1.000
	Reference range	%: 94-98 (m, f)
		Fraction: 0.94-0.98 (m, f)
	Equation	$FO_2Hb = sO_2 \times (1 - FCOHb - FMetHb)$
		If sO_2 is not measured, it will be calculated.
		If dyshemoglobins (FCOHb, FMetHb) are not known, they are set to the default values.

FCOHb	Definition	Fraction of carboxyhemoglobin in total hemo-globin in blood.
	Unit	%; fraction
	Measuring range	%: 0.0-100.0
		Fraction: 0.000-1.000
	Reference range	%: 0.5-1.5 (m, f)
		Fraction: 0.005-0.015 (m, f)
	Default value	0.004 (0.4 %)
FMetHb	Definition	Fraction of methemoglobin in total hemoglobin in blood.
	Unit	%; fraction
	Measuring range	%: 0.0-100.0
		Fraction: 0.000-1.000
	Reference range	%: 0.0-1.5 (m, f)
		Fraction: 0.00-0.015 (m, f)
	Default value	0.004 (0.4 %)
FHHb	Can also be calculated.	
	Definition	Fraction of deoxyhemoglobin in total hemoglobin in blood.
		Deoxyhemoglobin is the part of total hemoglobin which can bind oxygen forming oxyhemoglobin. It is also termed reduced hemoglobin, RHb.
	Unit	%; fraction
	Measuring range	%: 0.0-100.0
		Fraction: 0.000-1.000

FHHb (continued)	Equation	$FHHb = 1 - sO_2 \times (1 - FCOHb - FMetHb) - FCOHbFMetHb$
		If sO_2 is not measured, it will be calculated from equation 39.
		If dyshemoglobins (FCOHb, FMetHb) are not known, they are set to the default values.
FHbF	Definition	Fraction of fetal hemoglobin in total hemoglobin in blood
	Unit	%; fraction
	Measuring range	%: 0-100
		Fraction: 0.00-1.00
	Reference range	%: ≈80 (m, f)
	(neonates)	Fraction: ≈0.80 (m, f)
<i>c</i> K ⁺	Definition	Concentration of potassium ions in plasma.
	Unit	mmol/L; meq/L
	Measuring range	mmol/L; meq/L: 0.5-25.0
	Reference range	m, f: 3.4 – 4.5 mmol/L
	Conversion of units	mmol/L = meq/L
<i>c</i> Na ⁺	Definition	Concentration of sodium ions in plasma.
	Unit	mmol/L; meq/L
	Measuring range	mmol/L; meq/L: 7-350
	Reference range	m, f; 136 – 146 mmol/L
	Conversion of units	mmol/L = meq/L

<i>c</i> Ca ²⁺	Definition	Concentration of calcium ions in plasma.
	Unit	mmol/L; meq/L; mg/dL
	Measuring range	mmol/L: 0.20-9.99 meq/L: 0.40-19.98 mg/dL: 0.80-40.04
	Reference range	m, f: 1.15-1.29 mmol/L; 2.30-2.58 meq/L
	Conversion of units	meq/L = 2 mmol/L
		mg/dL = 4.008 mmol/L
	Reference	Siggaard-Andersen O, Thode J, Wandrup JH. The concentration of free calcium ions in the blood plasma ionized calcium. In: Siggaard-Andersen O, ed. Proceedings of the IFCC expert panel on pH and blood gases held at Herlev Hospital 1980, Copenhagen: Radiometer Medical A/S, 1981: 163-90. Available as AS79.
cCl-	Definition	Concentration of chloride ions in plasma.
	Unit	mmol/L; meq/L
	Measuring range	mmol/L; meq/L: 7 – 350
	Reference range	98 – 106 mmol/L (m, f)
	Conversion of units	mmol/L = meq/L
<i>c</i> Glu	Definition	Concentration of glucose in plasma.
	Unit	mmol/L; mg/dL
	Measuring range	mmol/L: 0.0-60 mg/dL: 0-1081
	Reference range	m, f: 3.89 - 5.83 mmol/L; 70-105 mg/dL
	Conversion of units	cGlucose (mg/dL) = 18.016 × c Glucose (mmol/L)
		cGlucose (mmol/L) = 0.055506 × c Glucose (mg/dL)

<i>c</i> Lac	Definition	Concentration of lactate in plasma.
	Unit	mmol/L; meq/L; mg/dL
	Measuring range	mmol/L: 0.0-30 meq/L: 0.0-30 mg/dL: 0-270
	Reference range	m, f: 0.5 - 1.6 mmol/L; 4.5 - 14.4 mg/dL
	Conversion of units	cLactate (mg/dL) = 9.008 × c Lactate (mmol/L)
		cLactate (mmol/L) = 0.11101 × c Lactate (mg/dL)
		(conversion based on the molecular weight of lactic acid)
ctBil	Definition	Concentration of total bilirubin in plasma.
		Total bilirubin includes its two forms: conjugated and unconjugated.
	Unit	μmol/L; mg/dL; mg/L
	Measuring range	μmol/L: 0-1000 mg/dL: 0.0-58.5 mg/L: 0-585
	Reference range	See the table on the next page.
	Conversion of units	ctBil (µmol/L) = 17.1 × c tBil (mg/dL)
		ctBil (µmol/L) = 1.71 × c tBil (mg/L)
		$ctBil (mg/dL) = 0.0585 \times ctBil (\mu mol/L)$
		$ctBil (mg/L) = 0.585 \times ctBil (\mu mol/L)$

Age	ctBil
≤24 hrs, premature	103 – 205 μmol/L 1.0 – 8.0 mg/dL 10 – 80 mg/L
≤24 hrs, full-term	34 – 103 μmol/L 2.0 – 6.0 mg/dL 20 – 60 mg/L
≤48 hrs, premature	103 – 205 μmol/L 6 – 12 mg/dL 60 – 120 mg/L
≤48 hrs	103 – 171 μmol/L 6 – 10 mg/dL 60 – 100 mg/L
3-5 days, premature	171 – 239 μmol/L 10 – 14 mg/dL 100 – 140 mg/L
3-5 days, full-term	68 – 137 μmol/L 4 – 8 mg/dL 40 – 80 mg/L
>1 month	3.4 – 17 μmol/L 0.2 – 1.0 mg/dL 2 – 10 mg/L

ctBil (*continued*) The reference ranges are as follows:

T

Input parameters

Definition Input parameters are the parameters keyed in by the operator on the Patient Identification screen or transferred from an interfaced database.

All input parameters are given in this section.

Definition	Patient temperature
Unit	°C; °F
Measuring range	°C: 15.0-45.0 °F: 59-113
Conversion	$T \circ F = \frac{9}{5}T \circ C + 32; T \circ C = \frac{5}{9}(T \circ F - 32)$

$FO_2(I)$	Definition	Fraction of oxygen in dry inspired air.
	Unit	%; fraction
	Input range	%: 0-100 fraction: 0.000-1.000
	Reference range	35.5-44.7 (m, f)

ctHb	Is used in the ABL800/05 FLEX.		
	Definition	Concentration of total hemoglobin in blood.	
	Input range /Unit	g/dL: 0.0-33.0 g/L: 0-330 mmol/L: 0.0-20.5	
	Conversion	ctHb (g/dL) = 1.61140 × c tHb (mmol/L);	
		ctHb (g/L) = 16.1140 × c tHb (mmol/L);	
		ctHb (mmol/L) = 0.62058 × c tHb (g/dL) = 0.062058 × c tHb (g/L)	
RQ	Definition	Respiratory quotient, ratio between the CO_2 production and the O_2 consumption.	
	Input range	0.00 - 2.00	

Input parameters, Continued

$pO_2(\overline{v})$	Definition	Oxygen tension of mixed venous blood.
	Input range/Unit	mmHg; torr: 0.0-750.0 kPa: 0.00-100
	Conversion	$p(kPa) = 0.133322 \times p(mmHg)$ $p(mmHg) = 7.500638 \times p(kPa)$
$sO_2(\overline{v})$	Definition	Oxygen saturation of mixed venous blood.
	Input range/Unit	%: 0.0 – 100.0 fraction: 0.000 – 1.000
Qt	Definition	Cardiac output; volume of blood delivered from the left ventricle into the aorta per unit of time.
		Also termed CO or C.O.
	Input range/Unit	0.0 - 1000.0 L/min
••••		
VO_2	Definition	Oxygen consumption; total amount of oxygen utilized by the whole organism per unit of time.
	Input range/Unit	mL/min: 0 - xxxx mmol/min: 0.0 - xxx.x
	Conversion	(mmol/L)min = (mL/dLmin)/22.41
VCO	Definition	Volume of carbon monoxide added to the patient for measurement and calculation of $V(B)$ [5].
	Input range/Unit	0.0 - 1000.0 mL

Fortsættes på næste side

Input parameters, Continued

<i>p</i> 50(st)	Can also be a derived pa	Can also be a derived parameter.		
	Definition	Partial pressure (or tension) of oxygen at half saturation (50 %) in blood at standard conditions: temperature = 37 °C pH = 7.40		
		$pCO_2 = 5.33$ kPa FCOHb, FMetHb, FHbF set to 0		
		<i>p</i> 50(st) may however vary due to variations in 2,3-DPG concentration or to the presence of abnormal hemoglobins.		
	Input range/Unit	mmHg; torr: 0.01 - 100.00 kPa: 0.001 - 13.332		
	Conversion	$p(kPa) = 0.133322 \times p(mmHg; torr)$ $p(mmHg; torr) = 7.500638 \times p(kPa)$		
FCOHb(1)	Definition	The fraction of COHb measured before the CO- injection.		
	Input range/Unit	%: 0.0 - 100.0 fraction: 0.000 - 1.000		
FCOHb(2)	Definition	The fraction of COHb measured after the CO- injection.		
	Input range/Unit	%: 0.0 - 100.0 fraction: 0.000 - 1.000		

Derived parameters

General	In the Type column the following symbols are used:
information	e ma for mangurad parameters

- ms for measured parameters
- dv for derived parameters

Acid-Base
derived
parameters

Symbol	Definition	Туре	Eq.
pH(<i>T</i>)	pH of blood at patient temperature.	dv	1
$c\mathrm{H}^{+}(T)$	Concentration of hydrogen ions in blood at patient temperature.	dv	2
$pCO_2(T)$	Partial pressure (or tension) of carbon dioxide at patient temperature.	dv	3
cHCO ₃ ⁻ (P)	Concentration of hydrogen carbonate in plasma (also termed actual bicarbonate).	dv	4
<i>c</i> Base(B) or ABE	Actual Base Excess, the concentration of titrable base when the blood is titrated with a strong base or acid to a plasma pH of 7.40, at pCO_2 of 5.33 kPa (40 mmHg) and 37 °C, at the actual oxygen saturation [4,5].	dv	5
	Positive values (base excess) indicate a relative deficit of noncarbonic acids; negative values (base deficit) indicate a relative excess of non- carbonic acids.		
cBase(B,ox)	<i>c</i> Base(B) of fully oxygenated blood.	dv	6
<i>c</i> Base(Ecf) or SBE	Standard Base Excess, an <i>in vivo</i> expression of base excess [5, 6]. It refers to a model of the extracellular fluid (one part of blood is diluted by two parts of its own plasma) and is calculated using a standard value for the hemoglobin concentration of the total extracellular fluid.	dv	7
cBase(Ecf,ox)	cBase(Ecf) of fully oxygenated blood.	dv	8
cHCO ₃ ⁻ (P,st)	Standard Bicarbonate, the concentration of hydrogen carbonate in the plasma from blood which is equilibrated with a gas mixture with $pCO_2 = 5.33$ kPa (40 mmHg) and $pO_2 \ge 13.33$ kPa (100 mmHg) at 37 °C [4,5].	dv	9
ctCO ₂ (P)	Concentration of total carbon dioxide, (free CO_2 + bound CO_2) in plasma.	dv	10

Derived parameters, Continued

Acid-Base derived	Symbol	Definition	Туре	Eq.
parameters (continued)	ctCO ₂ (B)	Concentration of total carbon dioxide in whole blood (also termed CO ₂ content).	dv	11
		Calculated based on the total CO ₂ concentrations in the two phases: plasma and erythrocyte fluid [5].		
	pH(st)	Standard pH (or eucapnic pH), defined as the pH of plasma of blood equilibrated to $pCO_2 = 5.33$ kPa (40 mmHg).	dv	12
		By ensuring the normal value of pCO_2 , the respiratory influence from pH is removed, and pH(P,st) therefore reflects the metabolic status of the blood plasma.		
	VCO ₂ /V(dry air)	The volume fraction of carbon dioxide in dry air.	dv	51

Oximetry derived parameters

Symbol	Definition	Туре	Eq.
FHHb	Fraction of deoxyhemoglobin in total hemo- globin in blood.	ms/dv	41
	Deoxyhemoglobin is the part of total hemo- globin which can bind oxygen forming oxy- hemoglobin. It is also termed reduced hemo- globin, RHb.		
FO ₂ Hb	Fraction of oxyhemoglobin in total hemoglobin in blood.	ms/dv	40
sO ₂	Oxygen saturation, the ratio between the concentrations of oxyhemoglobin and the hemoglobin minus the dyshemoglobins.	ms/dv	39
Het	Hematocrit, the ratio between the volume of erythrocytes and the volume of whole blood.	dv	13

Derived parameters, Continued

Oxygen derived parameters

Symbol	Definition	Туре	Eq.
$pO_2(T)$	Partial pressure (or tension) of oxygen at patient temperature.	dv	14
$pO_2(A)$	Partial pressure (or tension) of oxygen in alveolar air.	dv	15
$pO_2(A,T)$	Partial pressure (or tension) of oxygen in alveolar air at patient temperature.	dv	16
pO ₂ (a)/ FO ₂ (I)	Oxygen tension ratio of arterial blood and the fraction of oxygen in dry inspired air	dv	17
pO ₂ (a, <i>T</i>)/ FO ₂ (I)	Oxygen tension ratio of arterial blood at patient temperature and the fraction of of oxygen in dry inspired air	dv	18
<i>p</i> 50	Partial pressure (or tension) of oxygen at half saturation (50 %) in blood.	dv	19
	High and low values indicate decreased and increased affinity of oxygen to hemoglobin, respectively.		
<i>p</i> 50(<i>T</i>)	Partial pressure (or tension) of oxygen at half saturation (50 %) in blood at patient temperature.	dv	20
<i>p</i> 50(st)	Partial pressure (or tension) of oxygen at half saturation (50 %) in blood at standard conditions: temperature = $37 ^{\circ}C$ pH = 7.40 pCO ₂ = 5.33 kPa	dv/in	21
	FCOHb, FMetHb, FHbF set to 0		
	p50(st) may however vary due to variations in 2,3-DPG concentration or to the presence of abnormal hemoglobins.		
$pO_2(A-a)$	Difference in the partial pressure (or tension) of oxygen in alveolar air and arterial blood.	dv	22
	Indicates the efficacy of the oxygenation process in the lungs.		
$p\overline{O_2(A-a,T)}$	Difference in the partial pressure (or tension) of oxygen in alveolar air and arterial blood at patient temperature.	dv	23

Derived parameters, Continued

Oxygen derived parameters	Symbol	Definition	Туре	Eq.
(continued)	$pO_2(a/A)$	Ratio of the partial pressure (or tension) of oxygen in arterial blood and alveolar air.	dv	24
		Indicates the efficacy of the oxygenation process in the lungs.		
	$pO_2(a/A,T)$	Ratio of the partial pressure (or tension) of oxygen in arterial blood and alveolar air at patient temperature.	dv	25
	$pO_2(x)$ or p_x	Oxygen extraction tension of arterial blood.	dv	26
		Reflects the integrated effects of changes in the arterial $pO_2(a)$, ctO_2 , and $p50$ on the ability of arterial blood to release O_2 to the tissues [8].		
	$pO_2(\mathbf{x},T)$ or $p_{\mathbf{x}}(T)$	Oxygen extraction tension of arterial blood at patient temperature.	dv	
	ctO ₂ (B)	Total oxygen concentration of blood.	dv	27
		Also termed O ₂ content.		
	$ctO_2(a-\bar{v})$	Oxygen concentration difference between arterial and mixed venous blood.	dv	28
	BO_2	Hemoglobin oxygen capacity; the maximum concentration of oxygen bound to hemoglobin in blood saturated, so that all deoxyhemoglobin is converted to oxyhemoglobin.	dv	29
	ctO ₂ (x)	Extractable oxygen concentration of arterial blood.	dv	30
		Defined as the amount of O_2 which can be extracted per liter of arterial blood at an oxygen tension of 5.0 kPa (38 mmHg), maintaining constant pH and pCO_2 [8].		
	DO2	Oxygen delivery; the total amount of oxygen delivered to the whole organism per unit of time.	dv	31
	\dot{Q}_t	Cardiac output; volume of blood delivered from the left ventricle into the aorta per unit of time.	dv/in	32
		Also termed CO or C.O.		
	[.] VO ₂	Oxygen consumption; total amount of oxygen utilized by the whole organism per unit of time.	dv/in	33
	$FO_2(I)$	Fraction of oxygen in dry inspired air.	in	

Derived parameters, Continued

Oxygen derived parameters	Symbol	Definition	Туре	Eq.
(continued)	FShunt	Relative physiological shunt or concentration- based shunt [5,8,9].	dv	34
		• Calculated from the pulmonary shunt equation:		
		$\frac{\dot{Q}_{s}}{\dot{Q}_{t}} = \frac{1}{1 + \frac{ctO_{2}(a - \overline{v})}{ctO_{2}(A) - ctO_{2}(a)}}$		
		if both arterial and mixed venous blood samples are used.		
		• May be estimated from one arterial sample by assuming a constant difference in the concentrations of total oxygen in arterial and mixed venous blood:		
		$ctO_2(a-\overline{v}) = 2.3 \text{ mmol} / \text{L} (5.1 \text{ mL} / \text{dL})$		
	FShunt (T)	FShunt at patient temperature.	dv	35
	RI	Respiratory Index; ratio between the oxygen tension difference of alveolar air and arterial blood and the oxygen tension of arterial blood.	dv	36
	RI(<i>T</i>)	Respiratory Index; ratio between the oxygen tension difference of alveolar air and arterial blood and the oxygen tension of arterial blood at patient temperature.	dv	37
	VO ₂ /V(dry air)	Volume fraction of oxygen in dry air.	dv	52
	Qx	Cardiac oxygen compensation factor of arterial blood defined as the factor by which the cardiac output should increase to allow release of 2.3 mmol/L (5.1 mL/dL) oxygen at a mixed venous pO_2 of 5.0 kPa (38 mmHg) [5,8].	dv	38
	V(B)	Volume of blood, calculated when <i>F</i> COHb and $V(CO)$ values are keyed in [5].	dv	42

Units and numerical format of derived parameters

Calculated
versus estimatedDerived parameters are calculated or estimated on the basis of measured and keyed
in data. Calculations are made using equations programmed into the analyzer. The
accuracy of the calculations depends on the input parameters keyed into the
analyzer's computer.If the calculation of a parameter requires input from the operator, but this input is
next fortheoreming, the analyzer will use cartain default unloss (refer to the castion)

not forthcoming, the analyzer will use certain default values (refer to the section *Default Values* in this chapter).

Not all input parameters are stored as defaults. In these instances the dependent derived parameter will not be reported if the relevant input parameter(s) is/are *not* entered.

If the default values are used in the calculation of a parameter, then a parameter is considered *estimated* ("e") rather than *calculated* ("c").

Acid-base The table below lists the acid-base derived parameters.

(ABL83X FLEX corresponds to ABL82X FLEX, but it can measure *c*tBil and *F*HbF).

Symbol	Unit	Numerical format of result	ABL 805 FLEX	ABL8 10/15/ 20 FLEX	ABL820/ 25/30/35 FLEX	Input parameter	Sample type
pH(<i>T</i>)	-	X.XXX	с	с	с	Т	
$c\mathrm{H}^+(T)$	nmol/L	XXX.X	с	с	с	Т	
$pCO_2(T)$	mmHg; torr	XXX.X	c	c	с	Т	
	kPa	XX.XX	c	c	с		
$c \mathrm{HCO}_{3}^{-}(\mathrm{P})$	mmol/L	XX.X	c	c	с		
cBase(B)	mmol/L	Range: ±30.0	c	c	с	<i>c</i> tHb	
			e	c	с		
cBase(B,ox)	mmol/L	XXX.X	e	с	с	<i>c</i> tHb	
			e	с	с		
cBase(Ecf)	mmol/L	Range: ±30.0	с	с	с		
cBase(Ecf,ox)	mmol/L	XXX.X	e	с	с		
<i>c</i> HCO ₃ ⁻ (P,st)	mmol/L	XX.X	с	с	с	<i>c</i> tHb	
			e	с	с		
ctCO ₂ (P)	Vol %, mL/dL, mmol/L	XX.X	с	с	с		

parameters (continued)	FHbF).	_					
Symbol	Unit	Numerical format of result	ABL 805 FLEX	ABL 810/15/ 20 FLEX	ABL820/ 25/30/35 83X FLEX	Input parameter	Sample type

Acid-base (ABL83X FLEX corresponds to ABL82X FLEX, but it can measure ctBil and

ctCO ₂ (B)	Vol %, mL/dL, mmol/L	XX.X	с	с	с	<i>c</i> tHb	
pH(st)	-	X.XXX	с	c	c		
$VCO_2/V(dry air)$	%, fraction	XX.X X.XXX	С	с	С		

The table below lists the oximetry derived parameters. Oximetry parameters (ABL83X FLEX corresponds to ABL82X FLEX, but it can measure ctBil and FHbF)

Symbol	Unit	Numerical format of result	ABL 805 FLEX	ABL 810/15/ 20 FLEX	ABL820/ 25/30/35 83X FLEX	Input parameter	Sample type
Hct	%	XX				<i>c</i> tHb	
	fraction	X.XXX	c	c	с		
sO ₂	%	XX.X					
	fraction	X.XXX	e				
FO ₂ Hb	%	XX.X					
	fraction	X.XXX	e	e	с		
FHHb	%	XX.X					
	fraction	X.XXX	e	e	с		

Oxygen	The table be	The table below lists the oxygen derived parameters.							
parameters	(ABL83X corresponds to an ABL82X, but it can measure <i>c</i> tBil and <i>F</i> HbF).								
Symbol	Unit	Numerical format of result	ABL 805 FLEX	ABL 810/15 /20 FLEX	ABL 820/25/ 30/35 83X FLEX	Input parameter	Sample type		
$pO_2(T)$	mmHg; torr	XXX.X	e	e	c	Т			
	kPa	XXX.XX							
$pO_2(A)$	mmHg; torr	XXX.X	с	с	c	FO ₂ (I)+RQ	Arterial,		
	kPa	XX.XX	e	e	e		capillary		
$pO_2(\mathbf{A},T)$	mmHg; torr	XXX.X	с	с	с	FO ₂ (I)+RQ+T	Arterial, capillary		
	kPa	XX.XX	e	e	e				
<i>p</i> 50	mmHg; torr	XX.XX	e	e	e*				
	kPa	XX.XX							
<i>p</i> 50(<i>T</i>)	mmHg; torr	XX.XX	e	e	c*	Т			
	kPa	XX.XX							
p50(st)	mmHg; torr	XX.XX	e	e	c*				
	kPa	XX.XX							
$pO_2(A-a)$	mmHg; torr	XXX.X	c	c	c	$FO_2(I) + RQ$	Arterial,		
	kPa	XX.XX	e	e	e		capillary		
$pO_2(A-a,T)$	mmHg; torr	XXX.X	e	e	c	$FO_2(I)+RQ+T$	Arterial,		
	kPa	XX.XX	e	e	e		capillary		
$pO_2(a/A)$	%	XX.X	c	c	c	FO ₂ (I)+RQ	Arterial,		
	fraction	X.XXX	e	e	e		capillary		
$pO_2(a/A, T)$	%	XX.X	с	с	с	$FO_2(I)+RQ+T$	Arterial,		
	fraction	X.XXX	e	e	e		capillary		
$pO_2(a)/FO_2(I)$	%	XXX.X	с	с	c	FO ₂ (I)	Arterial,		
	fraction	XX.XX					capillary		
<i>p</i> O ₂ (a, <i>T</i>)/	%	XXX.X	с	с	с	$FO_2(I)+T$	Arterial,		
$FO_2(I)$	fraction	XX.XX					capillary		

Oxygen
parameters
(continued)(ABL83X FLEX corresponds to ABL82X FLEX, but it can measure ctBil and
FHbF).

Symbol	Unit	Numerical format of result	ABL 805 FLEX	ABL 810/15 /20 FLEX	ABL 820/25/ 30/35 FLEX	Input parameter	Sample type
$pO_2(\mathbf{x})$	mmHg; torr	XXX.X	e	e*	c*	<i>c</i> tHb+ <i>p</i> 50(st)	Arterial,
	kPa	XX.XX	-	e*	c*		capillary
$pO_2(\mathbf{x},T)$	mmHg; torr	XXX.X	e	e*	с*	ctHb+p50(st) +T	Arterial,
	kPa	XX.XX	-	e*	c*		capillary
ctO ₂ (B)	Vol %, mL/dL, mmol/L	XX.X	e	e	С	<i>c</i> tHb	
$ctO_2(a-\bar{v})$	Vol %, mL/dL, mmol/L	XX.X	e	e	с	<i>c</i> tHb	Venous + Arterial
BO ₂	Vol %, mL/dL, mmol/L	XX.X	e	e	с	<i>c</i> tHb	
ctO ₂ (x)	Vol %, mL/dL, mmol/L	XX.X	e	e*	с*	<i>c</i> tHb+ <i>p</i> 50(st)	Arterial, capillary
DO2	mL/min	XXXX	e	e	с	$\dot{Q_t}$	Arterial,
	mmol/min	XXX.X					capillary
$\dot{Q_t}$	L/min	XXX.X	e	e	с	ΫO ₂	Venous + arterial
ΫO ₂	mL/min	XXXX	e	e	с	$\dot{Q_t}$	Venous +
	mmol/min	XXX.X					arterial
FShunt	%	XX.X	e	e	c*	ctHb	Venous
	fraction	X.XXX					+ arterial
FShunt(T)	%	XX.X	e	е	c*	ctHb + T	Venous +
	fraction	X.XXX					arterial
RI	%	XX	с	с	с	FO ₂ (I)+RQ	Arterial,
	fraction	X.XX	e	e	e		capillary

Oxygen
parameters
(continued)(ABL83X FLEX corresponds to ABL82X FLEX, but it can measure ctBil and
FHbF).

Symbol	Unit	Numerical format of result	ABL 805 FLEX	ABL 810/15 /20 FLEX	ABL 820/25 /30/35 FLEX	Input parameter	Sample type
$\operatorname{RI}(T)$	%	XX	e	e	c	$FO_2(I)+RQ+T$	Arterial,
	fraction	X.XX	e	e	e	Т	capillary
$VO_2/V(dry air)$	%	XXX.X	c	c	c		
	fraction	X.XXX					
Q _x	-	XX.X	e	e*	c*	$ctHb^{1)}+p50(st)^{1)}$	Arterial,
			e	e*	c*		capillary
V(B)	L	X.X	с	с	с	<i>c</i> tHb+VCO+FCOH b(1)+FCOHb(2)	

* If the sO_2 value for establishing the ODC is greater than 0.97, the calculation of the parameter is not performed unless the p50(st) value is keyed in.

¹⁾ If not measured, e.g. *c*tHb (or derived by analyzer, e.g. *p*50(st)).

ElectrolyteThe table below lists the electrolyte derived parameters for the ABL800 FLEX
analyzers.

Symbol	Unit	Numerical format of result	ABL8X5 FLEX	Input parameter	Sample type
Anion Gap, K^+	meq/L, mmol/L	XXX.X	c ²⁾		
Anion Gap	meq/L, mmol/L	XXX.X	c ³⁾		
$cCa^{2+}(7.4)$	meq/L, mg/dL, mmol/L	XX.X	c ⁴⁾		
mOsm	mmol/kg	XXX.X	c ⁵⁾		

- 2) If the analyzer includes K, Na and Cl electrodes.
- 3) If the analyzer includes Na and Cl electrodes.
- 4) If the analyzer includes Ca electrode.
- 5) If the analyzer includes Na and Glucose electrodes.

List of equations

Units and symbols	All definitions and equations are based on SI units. If 'T' for patient temperature is not stated, the calculation is based on a temperature of 37.0 °C.
	The following SI units are used:
	concentration in mmol/L
	temperature in °C
	pressure in kPa
	fractions (not %)
	The following symbols are used in the equations:
	$\log(\mathbf{x}) = \log_{10}(\mathbf{x})$
	$ln(x) = log_e(x)$
pH (<i>T</i>)	Eq. 1 [13]:
	$pH(T) = pH(37) - \left[0.0146 + 0.0065 \times (pH(37) - 7.40)\right] \left[T - 37\right]$
$c\mathbf{H}^{+}(T)$	Eq. 2:
	$c \mathrm{H}^{+}(T) = 10^{(9-\mathrm{pH}(T))}$
$pCO_2(T)$	Eq. 3 [4]:
	$pCO_2(T) = pCO_2(37) \times 10^{[0.021 \times (T-37)]}$
cHCO ₃ ⁻ (P)	Eq. 4 [5]:
	$c \text{HCO}_{2}(P) = 0.23 \times p \text{CO}_{2} \times 10^{(\text{pH-pK}_{p})}$
	where
	$pK_{p} = 6.125 - log[1 + 10^{(pH - 8.7)}]$
	$cHCO_3^{-}(P)$ includes ions of hydrogen carbonate, carbonate, and carbamate in the plasma.
cBase(B)	Eq. 5 [4,14]:
	$cBase(B) = 0.5 \times \left(\frac{8a'-0.919}{a'}\right) + 0.5 \times \sqrt{\left(\frac{0.919-8a'}{a'}\right)^2 - 4 \times \frac{24.47 - cHCO_3^-(5.33)}{a'}}$

cBase(B)	where					
(commuea)	Eq.	Description				
	5.1	$a'=4.04 \times 10^{-3} + 4.25 \times 10^{-4} ctHb$				
	5.2	$c\text{HCO}_{3}^{-}(5.33) = 0.23 \times 5.33 \times 10^{\left[\frac{(\text{pH(st)}-6.161)}{0.9524}\right]}$				
	5.3	$pH(st) = pH + \log\left(\frac{5.33}{pCO_2}\right) \times \left(\frac{pH(Hb) - pH}{\log pCO_2(Hb) - \log(7.5006pCO_2)}\right)$				
	5.4	pH(Hb) = $4.06 \times 10^{-2} ctHb + 5.98 - 1.92 \times 10^{(-0.16169 ctHb)}$				
	5.5	$\log p \text{CO}_2(\text{Hb}) = -1.7674 \times 10^{-2} \text{ ctHb} + 3.4046 + 2.12 \times 10^{(-0.15158 \text{ ctHb})}$				
cBase(B,ox)	Eq. 6 [4]:				
	cBase(B,ox) = c Base(B) - 0.3062 × c tHb × (1 - s O ₂)					
	If <i>c</i> tHb is not measured or keyed in, the default value will be used.					
	If <i>s</i> O ₂ is	not measured, it will be calculated from equation 39.				
cBase(Ecf)	Eq. 7 [5]:				
	cBase(Ec	cf) = $cBase(B)$ for $ctHb$ = 3 mmol/L				
cBase(Ecf,ox)	Eq. 8 :					
	cBase(Ec	$f_{r,ox} = cBase(B_{r,ox})$ for $ctHb = 3 \text{ mmol/L}$				
cHCO ₃ ⁻ (P,st)	Eq. 9 [4,14]:				
	$c \text{HCO}_{3}^{-}(\text{P,st}) = 24.47 + 0.919 \times \text{Z} + \text{Z} \times \text{a'} \times (\text{Z} - 8)$					
	where					
	Eq.	Description				
	9.1	$a'=4.04 \times 10^{-3} + 4.25 \times 10^{-4} \times ctHb$				
	9.2	$Z = c \text{Base}(B) - 0.3062 \times c \text{tHb} \times (1 - sO_2)$				
ctCO ₂ (P)	Eq. 10 [4,5]:				
	$ctCO_2(P$	$P = 0.23 \times pCO_2 + cHCO_3^{-}(P)$				

$ctCO_2(B)$	Eq. 11 [5]:					
	ctCO ₂ (H	$3)=9.286\times10^{-3}\times p\text{CO}_2\times c\text{tHb}\times\left[1+10^{\left(p\text{H}_{\text{Ery}}-p\text{K}_{\text{Ery}}\right)}\right]$					
		$+ctCO_2(P) \times \left(1 - \frac{ctHb}{21.0}\right)$					
	where						
	Eq.	Description					
	9.1	$pH_{Ery} = 7.19 + 0.77 \times (pH - 7.40) + 0.035 \times (1 - sO_2)$					
	9.2	$pK_{Ery} = 6.125 - log \left[1 + 10^{(pH_{Ery} - 7.84 - 0.06 \times sO_2)} \right]$					
pH(st)	Eq. 12 [[14]:					
	pH(st): se	ee equations 5.3 - 5.5.					
Hct	Eq. 13 [15]:					
	$Hct = 0.0485 \times ctHb + 8.3 \times 10^{-3}$						
	Hct cann	ot be calculated on the basis of a default <i>c</i> tHb value.					
$pO_2(T)$	Eq. 14 [16,17]:						
	The standard Oxygen Dissociation Curve (ODC) is used (i.e. $p50(st) = 3.578$ kPa) at actual values of pH, pCO_2 , FCOHb, FMetHb, FHbF (see equations 46 - 47 in the section Oxyhemoglobin Dissociation Curve).						
	$pO_2(T)$ is calculated by a numerical method using:						
	$t_i(T) = c$	tHb × (1 - FCOHb - FMetHb) × $sO_{2,i}(T) + aO_2(T) \times pO_{2,i}$	(T)				
	where						
	Eq.	Description	See				
	14.1	S = ODC(P,A,T)	Eq. 47				
	14.2	$sO_{2,i}(T) = \frac{S \times (1 - FMetHb) - FCOHb}{1 - FCOHb - FMetHb}$	Eq. 46.12				
	14.3	$pO_{2,i}(T) = \frac{P}{1 + \frac{FCOHb}{sO_{2,i}(T) \times (1 - FCOHb - FMetHb)}}$	Eq. 46.10				

$pO_2(T)$ (continued)	Eq.	Description	See			
()	14.4	$\alpha O_2 = 9.83 \times 10^{-3} e^{\left[-1.15 \times 10^{-2} (T-37.0) + 2.1 \times 10^{-4} \times (T-37.0)^2\right]}$				
	14.5	P is the variable during iteration.				
	14.6	A=ac-1.04 × $\frac{\partial pH}{\partial T}$ × (T-37.0)				
	14.7	T= patient temperature in °C (keyed-in).				
	14.8	$\frac{\partial pH}{\partial (T)} = -1.46 \times 10^{-2} - 6.5 \times 10^{-3} \times (pH(37) - 7.40)$				
		When $t_i(T) = t_i(37.0)$, then $pO_{2,i}(T) = pO_2(T)$				
<i>p</i> O ₂ (A)	Eq. 15 [5]:				
	$pO_2(A) = FO_2(I) \times (p(amb) - 6.275)$					
	-	$-p\mathrm{CO}_2 \times \left[\mathrm{RQ}^{-1} - F\mathrm{O}_2(\mathrm{I}) \times (\mathrm{RQ}^{-1} - \mathrm{I})\right]$				
	If FO ₂ (I)	and RQ are not keyed in, they are set to the default values.				
	The calcu	lation requires entering the sample type as "Arterial" or "Cap	oillary".			
$pO_2(\mathbf{A},T)$	Eq. 16	4,5,18]:				
	$pO_2(A,T) = FO_2(I) \times [p(amb) - pH_2O(T)]$					
		$-p\mathrm{CO}_{2}(T) \times \left[\mathrm{RQ}^{-1} - F\mathrm{O}_{2}(\mathrm{I}) \times (\mathrm{RQ}^{-1} - 1)\right]$				
	$p H_2 O(T$	$) = 6.275 \times 10^{\left[2.36 \times 10^{-2} \times (T - 37.0) - 9.6 \times 10^{-5} \times (T - 37.0)^{2}\right]}$				

If *FO*₂(I) and RQ are not keyed in, they are set to the default values. The calculation requires entering the sample type as "Arterial" or "Capillary".

$pO_2(a)/FO_2(I)$ Eq. 17:

$$pO_2(a) / FO_2(I) = \frac{pO_2(a)}{FO_2(I)}$$

The calculation cannot be performed on the basis of the default $FO_2(I)$ value, and the calculation requires entering the sample as "Arterial" or "Capillary".

$pO_2(a,T)/FO_2(I)$ Eq. 18:

$$pO_2(a,T) / FO_2(I) = \frac{pO_2(a,T)}{FO_2(I)}$$

The calculation cannot be performed on the basis of the default $FO_2(I)$ value, and the calculation requires entering the sample as "Arterial" or "Capillary".

Eq. 19 Refer to Eq. 46.10:

The ODC is determined as described in equations 46 - 47 in the section *Oxyhemoglobin Dissociation Curve*.

$$p50 = \frac{P}{1 + \frac{FCOHb}{0.5 \times (1 - FCOHb - FMetHb)}}$$

where

Description	See
P = ODC(S,A,T)	Eq. 47
$S = \frac{0.5 \times (1 - FCOHb - FMetHb) + FCOHb}{1 - FMetHb}$	Eq. 46.11
A = a	
$T = 37.0 \ ^{\circ}\mathrm{C}$	Eq. 46.13

*p*50(*T*)

*p*50

Eq. 20:

The ODC is determined as described in equations 46 - 47 in the section *Oxyhemoglobin Dissociation Curve*.

$$p50(T) = \frac{P}{1 + \frac{FCOHb}{0.5 \times (1 - FCOHb - FMetHb)}}$$

where

p50(T) (continued)	Description	See					
()	P = ODC(S, A, T)	Eq. 47					
	$S = \frac{0.5 \times (1 - FCOHb - FMetHb) + FCOHb}{1 - FMetHb}$ Eq. 46.11						
	$A=a-1.04 \times \frac{\partial pH}{\partial (T)} \times (T-37.0)$						
	$\frac{\partial \text{pH}}{\partial (T)} = -1.46 \times 10^{-2} - 6.5 \times 10^{-3} \times (\text{pH}(37) - 7.40)$						
	T = patient temperature in °C (keyed-in)						
<i>p</i> 50(st)	Eq. 21:						
	$p50$ is calculated for pH = 7.40, $pCO_2 = 5.33$ kPa, $FCOHb = 0$, $FMetHb = 0$, $FHbF = 0$.						
	The ODC is determined as described in equations 46 - 47 in the section <i>Oxyhemoglobin Dissociation Curve</i> , see equation 47.						
	p50(st) = ODC(S,A,T)						
	where						
	Description	See					
	S = 0.5	Eq. 46.11					
	A = a6 corresponds to $pH = 7.40$, $pCO_2 = 5.33$ kPa, $FCOHb = 0$, Eq. 46. FMetHb = 0, FHbF = 0						
	$T = 37.0 ^{\circ}\mathrm{C}$						
$pO_2(A-a)$	Eq. 22:						
	$pO_2(A-a) = pO_2(A) - pO_2(a)$						
	The calculation requires entering the sample type as "Arterial" or "C	apillary".					
$pO_2(A-a,T)$	Eq. 23:						
	$pO_2(A-a,T) = pO_2(A,T) - pO_2(a,T)$						
	The calculation requires entering the sample type as "Arterial" or "Capillary".						
	Conti	nued on next page					

$pO_2(a/A)$	Eq. 24:	
	$pO_2(a A) = \frac{pO_2(a)}{pO_2(A)}$	
	The calculation requires entering the sample type as "Arterial" or	r "Capillary".
$pO_2(a/A,T)$	Eq. 25:	
	$pO_2(a/A,T) = \frac{pO_2(a,T)}{pO_2(A,T)}$	
	The calculation requires entering the sample type as "Arterial" of	r "Capillary".
$pO_2(\mathbf{x})$	Eq. 26 [8]:	
(or p_x)	The ODC is determined as described in equations 46 - 47 in the solution Oxyhemoglobin Dissociation Curve.	section
	$pO_2(x)$ is calculated by a numerical method, using:	
	Eq. Description	See
	26.1 S = ODC(P,A, T)	Eq. 47
	26.2 $sO_{2,i} = \frac{S \times (1 - FMetHb) - FCOHb}{1 - FCOHb - FMetHb}$	Eq. 46.12
	26.3 $pO_{2,i} = \frac{P}{1 + \frac{FCOHb}{sO_{2,i} \times (1 - FCOHb - FMetHb)}}$	Eq. 46.10
	26.4 $t_i = ctHb \times (1 - FCOHb - FMetHb) \times sO_{2,i} + 9.83 \times 10^{-3} \times pO_{2,i}$	
	26.5 $A = a$	
	26.6 $T = 37 ^{\circ}\mathrm{C}$	
	When $t_i = ctO_2 - 2.3 \text{ mmol/L}$, then $pO_{2,i} = pO_2(x)$, where ctO_2 is c described in equation 27.	letermined as

 $pO_2(x)$ cannot be calculated on the basis of a default *c*tHb value.

 $pO_2(x)$ can only be calculated if the measured $sO_2(a) \le 0.97$ (or p50(st) keyed in).

The calculation requires entering the sample type as "Arterial" or "Capillary".

ctO ₂	Eq. 27 [5]:							
	$ctO_2 = \alpha$	$dO_2 \times pO_2 + sO_2 \times (1 - FCOHb - FMetHb) \times ctHb$						
	αO_2 is the concentrational solubility coefficient for O_2 in blood (here set to 9.83 x 10^{-3} mmolL ⁻¹ kPa ⁻¹ at 37 °C [5,19].							
	ctO_2 can	not be calculated on the basis of a default c tHb value.						
$ctO_2(a-\overline{v})$	Eq. 28 :							
	$ctO_2(a - b)$	$\overline{\mathbf{v}}$) = $ctO_2(\mathbf{a}) - ctO_2(\overline{\mathbf{v}})$						
	where ct($D_2(a)$ and $ctO_2(\overline{v})$ are calculated from equation 27 for arteri	al and mixed					
	venous bl	lood, respectively. The calculation requires two measurements	ents.					
BO ₂	Eq. 29 [7]:						
	$BO_2 = ct$	$tHb \times (1 - FCOHb - FMetHb)$						
	BO_2 cann	ot be calculated on the basis of a default <i>c</i> tHb value.						
$ctO_2(\mathbf{x})$	Eq. 30 [8]:							
(or <i>c</i> _x)	The ODC is determined, as described in equations 46 - 47 in the section Oxyhemoglobin Dissociation Curve							
	$ctO_{2}(\mathbf{x}) = ctO_{2}(\mathbf{a}) - t$							
	where							
	Fa	Description	Saa					
	30 1		50000					
	50.1	$t_i = ctHb \times (1 - FCOHb - FMetHb) \times sO_{2,i} + 9.83 \times 10^{-3} \times pO_2(5)$						
	30.2	$pO_2(5) = 5.00 \text{ kPa}$						
	30.3	S = ODC(P,A,T)	Eq. 47					
	30.4	$P = pO_{2}(5) \times \left[1 + \frac{FCOHb}{sO_{2,i} \times (1 - FCOHb - FMetHb)}\right]$	Eq. 46.9					
	30.5	$sO_{2,i} = \frac{S \times (1 - FMetHb) - FCOHb}{(1 - FCOHb - FMetHb)}$	Eq. 46.12					
	30.6	$\mathbf{A} = \mathbf{a}$						
	30.7	$T = 37.0 \ ^{\circ}\mathrm{C}$						

$ctO_2(\mathbf{x})$	$ctO_2(a)$ is determined as described in equation 27.		
(or c _x) (continued)	$ctO_2(x)$ cannot be calculated on the basis of a default $ctHb$ value.		
	$ctO_2(x)$ can only be calculated if the measured $sO_2(a) \le 0.97$ (or if $p50(st)$ is keyed in).		
	The calculation requires entering the sample type as "Arterial" or "Capillary".		
ĎΟ ₂	Eq. 31 :		
	$\dot{\mathbf{D}}\mathbf{O}_2 = c\mathbf{t}\mathbf{O}_2 \times \dot{\mathbf{Q}}_1$		
	\dot{Q}_t is the cardiac output and is an input parameter for calculation of $\dot{D}O_2$.		
	If \dot{Q}_t is not keyed in, $\dot{D}O_2$ will not be calculated.		
	The calculation requires entering the sample type as "Arterial" or "Capillary".		
ò	Eq. 32:		
V ($\dot{\mathbf{Q}}_{t} = \frac{\dot{\mathbf{V}}\mathbf{O}_{2}}{ct\mathbf{O}_{2}(\mathbf{a} - \overline{\mathbf{v}})}$		
	If $\dot{V}O_2$ is not keyed in, \dot{Q}_t will not be calculated.		
ŻO₂	Eq. 33:		
	$\dot{\mathbf{V}}\mathbf{O}_2 = \dot{\mathbf{Q}}_1 \times ct\mathbf{O}_2(\mathbf{a} - \overline{\mathbf{v}})$		
	If \dot{Q}_t is not keyed in, $\dot{V}O_2$ will not be calculated.		
FShunt	Eq. 34 [5]:		
	$FShunt = \frac{ctO_2(c) - ctO_2(a)}{ctO_2(c) - ctO_2(\overline{v})}$		
	and		
	Eq. Description		
	34.1 $FShunt \cong \frac{ctO_2(A) - ctO_2(a)}{ctO_2(A) - ctO_2(\overline{v})}$		

34.2 $FShunt = \left[1 + \frac{ctO_2(a) - ctO_2(\overline{v})}{1 + \frac{ctO_2(\overline{v})}{1 + ctO_2($	
$\begin{bmatrix} ctO_2(A) - ctO_2(a) \end{bmatrix}$	
where	
$ctO_2(c)$: total oxygen in pulmonary capillary blood	
$ctO_2(a)$: total oxygen in arterial blood	
$ctO_2(A)$: total oxygen in alveolar blood. Oxygen tension = p	$O_2(A)$
$ctO_2(\overline{v})$: total oxygen in mixed venous blood	
34.3 $ctO_2(a) = 9.83 \times 10^{-3} pO_2(a) + ctHb \times (1 - FCOHb - FMet)$	tHb)× $sO_2(a)$
34.4 $ctO_2(A) = 9.83 \times 10^{-3} pO_2(A) + ctHb \times$	
$(1 - FCOHb - FMetHb) \times sO_2(A)$	
34.5 $ctO_2(\bar{v}) = 9.83 \times 10^{-3} pO_2(\bar{v}) + ctHb \times$	
$(1 - FCOHb - FMetHb) \times sO_2(\overline{v})$	
where:	
$pO_2(a)$: oxygen tension in arterial blood; measured.	
$pO_2(A)$: oxygen tension in alveolar blood. See equation 15.	
$pO_2(\overline{v})$: oxygen tension in mixed venous blood; measured at entered.	nd then
$sO_2(a)$: oxygen saturation in arterial blood; can be measured	l.
$sO_2(A)$: oxygen saturation in (alveolar) blood calculated from where P = $pO_2(A)$. If $sO_2(a) > 0.97$, a keyed-in $p50(st)$ will be determine the ODC. If $sO_2(a) > 0.97$ and no $p50(st)$ has been default value (3.578 kPa) will be used to determine the ODC	m equation 39 be used to n keyed in, the C.
$sO_2(\overline{v})$: oxygen saturation in mixed venous blood.	
If not keyed in, it will be calculated from equation 39 where If $sO_2(a) > 0.97$, a keyed-in $p50(st)$ will be used to determine	$P = pO_2(\overline{v}).$ e the ODC.
The calculation requires entering the sample type as "Arteria "Capillary". If $sO_2(a) > 0.97$ and no $p50(st)$ has been keyed in, the defaul kPa) will be used to estimate the ODC.	al" or lt value (3.578
If no venous sample is measured, FShunt is estimated assum	ning:
$ctO_2(a) - ctO_2(\overline{v}) = 2.3 \text{ mmol/L in equation } 34.2$	

$$FShunt(T) = \left[1 + \frac{ctO_2(\mathbf{a}, T) - ctO_2(\overline{\mathbf{v}}, T)}{ctO_2(\mathbf{A}, T) - ctO_2(\mathbf{a}, T)}\right]^{-1}$$

where

 $ctO_2(a,T)$: total oxygen in arterial blood at patient temperature

 $ctO_2(A,T)$: total oxygen in alveolar blood at patient temperature

 $ctO_2(\overline{v},T)$: total oxygen in mixed venous blood at patient temperature

Eq.	Description	See
35.1	$ctO_2(a,T) = ctO_2$ calculated from equation 25 for arterial pO_2 and sO_2 values at 37 °C.	
35.2	$ctO_2(\mathbf{A}, T) = \alpha O_2(T) \times pO_2(\mathbf{A}, T)$	
	+ c tHb × (1 - F COHb - F MetHb) × s O ₂ (A, T)	
35.3	$\alpha O_2(T) = 9.83 \times 10^{-3} \mathrm{e}^{\left[-1.15 \times 10^{-2} \times (T-37.0) + 2.1 \times 10^{-4} \times (T-37.0)^2\right]}$	
35.4	$pO_2(A,T)$ is calculated from equation 15.	
35.5	$sO_2(\mathbf{A},T) = \mathbf{S}$	
35.6	S = ODC(P,A,T)	Eq. 47
35.7	$\mathbf{P} = p\mathbf{O}_2(\mathbf{A}, T)$	
35.8	$A = a - 1.04 \times \frac{\partial pH}{\partial (T)} \times (T - 37.0)$	
35.9	T = patient temperature (keyed-in)	
35.10	$\frac{\partial \mathbf{pH}}{\partial (T)} = 1.46 \times 10^{-2} - 6.5 \times 10^{-3} (\mathbf{pH}(37) - 7.40)$	
	If $sO_2(a) > 0.97$, a keyed-in $p50(st)$ will be used to determine the ODC. If $sO_2(a) > 0.97$ and no $p50(st)$ has been keyed in, the default value (3.578 kPa) will be used to determine the ODC.	
35.11	$ctO_2(\overline{v},T) = ctO_2(\overline{v})$ at 37 °C is calculated from equation 27 for	
	mixed venous blood values of pO_2 and sO_2 . If $sO_2(\overline{v}) > 0.97$, a	
	keyed-in $p50(st)$ will be used to determine the ODC.	
	If $sO_2(\overline{v}) > 0.97$ and no $p50(st)$ has been keyed in, the default	
	value (3.578 kPa) will be used to estimate the ODC. If no mixed venous sample is measured, the F Shunt(T) is estimated	
	assuming $ctO_2(a,T) - ctO_2(\overline{v},T) = 2.3 \text{ mmol/L in equation 35}$.	

RI Eq. 36: $RI = \frac{pO_2(A) - pO_2(a)}{pO_2(a)}$ The calculation requires entering the sample type as "Arterial" or "Capillary". Eq. 37: RI(T) $RI(T) = \frac{pO_{2}(A,T) - pO_{2}(a,T)}{pO_{2}(a,T)}$ The calculation requires entering the sample type as "Arterial" or "Capillary". Qx Eq. 38 [8]: The ODC is determined as described in equations 46 - 47 in the section Oxyhemoglobin Dissociation Curve. $Q_x = \frac{2.3}{ctO_2(a) - t_1}$ Eq. Description See... $t_i = ctHb \times (1 - FCOHb - FMetHb) \times sO_{2i} + 9.83 \times 10^{-3} pO_2(5)$ 38.1 38.2 $pO_2(5) = 5.00 \text{ kPa}$ S = ODC(P,A,T)38.3 $P = pO_2(5) \times \left[1 + \frac{FCOHb}{sO_{2,i} \times (1 - FCOHb - FMetHb)} \right]$ 38.4 Eq. 46.9 $sO_{2,i} = \frac{S \times (1 - FMetHb) - FCOHb}{1 - FCOHb - FMetHb}$ 38.5 Eq. 46.12 38.6 A = a $T = 37.0 \,^{\circ}\text{C}$ 38.7 $ctO_2(a)$ is determined as described in equation 27. Qx cannot be calculated on the basis of a default *c*tHb value. Qx can only be calculated if the measured $sO_2(a) \le 0.97$ (or if p50(st) is keyed in).

The calculation requires entering the sample type as "Arterial" or "Capillary".

sO₂

Eq. 39:

The ODC is determined as described in equation 46 (points I and III). See the section *Oxyhemoglobin Dissociation Curve*.

$$sO_2 = \frac{S \times (1 - FMetHb) - FCOHb}{1 - FCOHb - FMetHb}$$

where

	Description	See
	S = ODC(P,A,T)	
	$P = pO_2 + \frac{pO_2 \times FCOHb}{sO_2 \times (1 - FCOHb - FMetHb)}$	Eq. 46.9
	$\mathbf{A} = \mathbf{a}$	
	$T = 37.0 ^{\circ}\mathrm{C}$	
FO ₂ Hb	Eq. 40 :	
	$FO_{2}Hb = sO_{2} \times (1 - FCOHb - FMetHb)$	
	If sO_2 is not measured, it will be calculated from equation 39.	
	If dyshemoglobins (FCOHb, FMetHb) are not known, they are set to the values.	default
FHHb	Eq. 41 :	
	$FHHb = 1 - sO_2 \times (1 - FCOHb - FMetHb) - FCOHb - FMetHb$	
	If sO_2 is not measured, it will be calculated from equation 39.	
	If dyshemoglobins (FCOHb, FMetHb) are not known, they are set to the values.	default
<i>V</i> (B)	Eq. 42 [5]:	
	$V(B) = \frac{1 \times 10^3 \times V(\text{CO})}{24 \times (F\text{COHb}(2) - F\text{COHb}(1)) \times 0.91 \times c\text{tHb}}$	

<i>V</i> (B)	Eq.	Eq. Description		
(continued)	42.1	V(B) = $V(CO)$	_	
		2.184 × 10 ⁻² × ($FCOHb(2) - FCOHb(1)$) × $ctHb$		
	42.2	V(CO) = volume (in mL) of carbon monoxide injected acc procedure and the value keyed-in.	ording to the	
	42.3	FCOHb(1) = fraction of COHb measured before the CO	injection	
	42.4	FCOHb(2) = fraction of COHb measured after the CO in	jection	
Anion Gap,K ⁺	Eq. 43 :			
	Anion G	$ap, K^+ = cNa^+ + cK^+ - cCl^ cHCO_3^-$		
Anion Gap	Eq. 44:			
	AnionGa	$\mathbf{p} = c\mathbf{N}\mathbf{a}^+ - c\mathbf{C}\mathbf{l}^ c\mathbf{H}\mathbf{C}\mathbf{O}_3^-$		
$c \operatorname{Ca}^{2+}(7.4)$	Eq. 45 F	Ref. [12]:		
	$c\mathrm{Ca}^{2+}(7.4) = c\mathrm{Ca}^{2+}[1 - 0.53 \times (7.40 - \mathrm{pH})]$			
	Due to bi range 7.2	ological variations this equation can only be used for a pH - 7.6.	value in the	
Eq. 46-47	See Oxyh	eemoglobin dissociation curve (ODC).		
mOsm	Eq. 48:			
	<i>m</i> Osm =	$= 2cNa^+ + cGlu$		
FHbF	Eq. 49:			
	An iterative method is used to calculate <i>F</i> HbF. The input parameters are sO_2 , <i>c</i> eHb (effective hemoglobin concentration), and cO_2 HbF (concentration of fetal oxyhemoglobin).			
	In the cal = 0, <i>F</i> Me	culations the following are assumed: $pH = 7.4$, $pCO_2 = 5.2$ otHb = 0, $cDPG = 5$ mmol/L, and temp = 37 °C.	33 kPa, <i>F</i> COHb	
	Step	Description	See	
	1.	An estimate of <i>F</i> HbF is made: F HbF _{est} = 0.8		
	2.	$pO_{2,est} = ODC (sO_2, A, T);$	Eq. 47	
		where the constant A depends on $FHbF = FHbF_{est}$		

FHbF (continued)	Step	Description	See
	3.	sO_2 (for fetal blood) = ODC ($pO_{2,est}$, A,T);	Eq.47
		where $FHbF = 1$	
	4.	$cO_2HbF_{est} = sO_2$ (fetal blood) × $ceHb \times FHbF_{est}$	
	5.	$\Delta F HbF_{est} = \frac{cO_2 HbF_{meas.} - cO_2 HbF_{est}}{ceHb}$	
	6.	If $ \Delta F HbF_{est} \ge 0.001$, proceed to step 7.	
		If $ \Delta FHbF_{est} < 0.001$, proceed to step 9.	
	7.	$FHbF_{est, new} = FHbF_{est, old} + \Delta FHbF_{est}$	
	8.	Return to step 2 .	
	9.	End of iteration. The value for <i>F</i> HbF has converged.	
$pO_2(\mathbf{x},T)$	Eq. 50 [8]:	
	The ODC Dissociat	<i>C</i> is determined as described in equations 46 - 47 in <i>Oxyhem</i> <i>tion Curve</i> .	noglobin
	$pO_2(x)$ is	calculated by a numerical method, using:	
	Eq.	Description	See
	50.1	S = ODC(P,A,T)	Eq. 47
	50.2	$sO_{2,i}(T) = \frac{S \times (1 - FMetHb) - FCOHb}{1 - FCOHb - FMetHb}$	Eq. 46.12
	50.3	$pO_{2,i}(T) = \frac{P}{1 + \frac{FCOHb}{sO_{2,i}(T) \times (1 - FCOHb - FMetHb)}}$	Eq. 46.10
	50.4	$t_{i}(T) = ctHb \times (1 - FCOHb - FMetHb) \times sO_{2,i}(T) + aO_{2}(T) \times pO_{2,i}(T)$	
	50.5	A = a	
	50.6	T = patient temperature	
	50.7	$\alpha O_2(T) = 0.00983 \times e^{\left[-0.115 \times (T-37) + 21 \times 10^{-5} \times (T-37)^2\right]}$	

$pO_2(\mathbf{x},T)$ (continued)	Eq.	Description
	50.8	$pO_{2,i} = pO_2(\mathbf{x},T)$
		when $t_i(T) = ctO_2(37 \text{ °C}) - 2.3 \text{ mmol/L}$
	$pO_2(\mathbf{x},T)$	is calculated in accordance with OSA V3.0.
	$pO_2(\mathbf{x},T)$	can only be calculated if the measured $sO_2(a) \le 0.97$ (or $p50(st)$ keyed in).
	$pO_2(x,T)$ FCOHb,	is tagged with "?" if any of the following parameters: sO_2 , FMetHb, pO_2 , pCO_2 , pH or ctHb is tagged with "?".
	The calcu	llation requires entering the sample type as "Arterial" or "Capillary".

VCO₂/V(dry air) Eq. 51:

 $VCO_2 / V(dry air) = \frac{pCO_2}{p(amb) - 6.275}$

VO₂/V(dry air) Eq. 52:

$$VO_2 / V(dry air) = \frac{pO_2}{p(amb) - 6.275}$$

Oxyhemoglobin dissociation curve (ODC)

ODC equations These equations account for the effect of *F*COHb on the shape of the Oxyhemoglobin Dissociation Curve (ODC) in accordance with the Haldane equation.

Eq. 46 [16,18]:

$$y - y^{\circ} = (x - x^{\circ}) + h \times tanh[k^{\circ}(x - x^{\circ})]$$

where $k^{o} = 0.5343$

Eq.	Description	
46.1	$\mathbf{x} = \ln p$	
46.2	$y = \ln \frac{s}{1 - s}$	
46.3	$y^{\circ} = \ln \frac{s^{\circ}}{1 - s^{\circ}}$ where $s^{\circ} = 0.867$	
46.4	$x^{\circ} = x^{\circ\circ} + a + b = \ln(p^{\circ\circ}) + a + b$	where $p^{00} = 7$ kPa

The actual position of the ODC in the coordinate system $(\ln(s/(1-s)) \text{ vs } \ln(p))$ used in the mathematical model, is expressed by equations 46.3 and 46.4.

The symbols 'a' and 'b' reflect the ODC displacement from the reference position to its actual position in this coordinate system:

'a' describes the displacement at 37 °C. 'b' the additional displacement due to the patient temperature difference from 37 °C.

The ODC reference position	The reference position of the ODC was chosen to be the one that corresponds to the default value for $p50(st) = 3.578$ kPa, which is traditionally considered the most likely value of $p50$ for adult humans under standard conditions, namely:	
	pH = 7.40	
	$pCO_2 = 5.33 \text{ kPa}$	
	FCOHb, $FMetHb$, $FHbF = 0$	
	cDPG = 5 mmol/L	
Eq.	Description	
-------	---	
46.5	$\mathbf{x} - \mathbf{x}^\circ = \ln \frac{p}{7} - \mathbf{a} - \mathbf{b}$	
46.6	$h = h^{\circ} + a$ where $h^{\circ} = 3.5$	
46.7	$b = 0.055 \times (T - T^{\circ})$ $T^{\circ} = 37 ^{\circ}C$	
46.8	$p = pO_2 + M \times pCO$	
	where $M \times pCO$ is taken from the Haldane equation [20]:	
	$\frac{pO_2}{cO_2Hb} = M \times \frac{pCO}{cCOHb}$, to give eq. 46.9	
46.9	$p = pO_2 + \frac{pO_2}{sO_2} \times \left[\frac{FCOHb}{1 - FCOHb - FMetHb}\right]$ or equation 46.10	
46.10	$pO_2 = \frac{p \times [sO_2 \times (1 - FCOHb - FMetHb)]}{1 + FCOHb}$	

described by equation 46.11 below:

Eq.	Description	
46.11	$s = \frac{cO_2Hb + cCOHb}{cO_2Hb + cCOHb + cHHb}$	
	$=\frac{sO_2 \times (1 - FCOHb - FMetHb) + FCOHb}{1 - FMetHb}$	or
46.12	$sO_2 = \frac{s \times (1 - FMetHb) - FCOHb}{1 - FCOHb - FMetHb}$	

The actual ODCThe actual position of the ODC at 37 °C for a given sample is, in principle,
determined in two steps:

- 1. The calculation of the combined effect on the ODC position at 37 °C of all known causes for displacement (= ac in equation 46.13), and based on this position:
- 2. The computation by a numerical method of the actual position of the ODC curve by shifting it to pass through the known set of coordinates (P_0 , S_0).

Eq.	Description
46.13	a = ac + a6
46.14	ac = a1 + a2 + a3 + a4 + a5
46.15	$a1 = -0.88 \times (pH - 7.40)$
46.16	$a2 = 0.048 \times \ln \frac{p \text{CO}_2}{5.33}$
46.17	$a3 = -0.7 \times FMetHb$
46.18	$a4 = (0.06 - 0.02 FHbF) \times (cDPG - 5)$
46.19	$a5 = -0.25 \times FHbF$

Determining the actual	Step	Description
displacement	(I):	pO_2 , sO_2 can be used.
	s ~ ac-	If $sO_2 > 0.97$, the calculation is based on (II) or (III) - <i>see below</i> .
	$position $ (P_0, S_0)	Coordinates (P_0 , S_0) are calculated from equations (46.9) and (46.11).
		If FCOHb and FMetHb are not known, the default values are used.
		The ODC is shifted from the reference position to a position which corresponds to the effect of all measured parameters according to step (I).
		The magnitude of the shift is "ac".
	s ~ ac Ref.	The ODC is then further shifted to pass through the point (P_0, S_0) .
	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$	The magnitude of the shift is "a6".

Determining the actual	Step	Description
displacement	(II):	$sO_2 > 0.97$ (or erroneous) and $p50(st)$ is keyed in.
(continuea)	S Ref.	Coordinates (P_0 , S_0) are calculated from ($p50(st)$, 0.5) using equations 46.9 and 46.11.
	position position position position position	Reference position of the ODC.
	$Fref.position\#(P_0, S_0)$	The ODC is shifted from the reference position to pass through the point (P_0 , S_0). In this position, the ODC reflects the $p50(st)$ of the patient, i.e., the particular patient but at standard conditions.
	Ref. position \sim ac (P_0, S_0)	The ODC is further shifted, as determined by the effect of the measured parameters ("ac"), to its actual position. This position reflects the $p50(act)$ of the patient.
	(III):	$sO_2 > 0.97$ (or erroneous) and no $p50(st)$ has been keyed in.
	S Ref. position p	Reference position of the ODC.
	Ref. position ~ ac	The position of the actual ODC can now be approximated from the reference position, using the actual values of pH, pCO_2 , FCOHb, FMetHb and FHbF to determine the shift 'ac'.

The curves are used only to illustrate the principles of the ODC determination

Coordinates on the ODC	Calculation of a set of coordinates on the ODC is symbolized by: Eq. 47:				
					S = ODC(P, A, T) or $P = ODC(S, A, T)$
		These equations are symbolic representations of the relationship between saturation (S) , tension (P) , displacement (A) , and temperature (T) .			
	To calculate S or P and to further calculate sO_2 and pO_2 , the other variables should be specified. S and P are calculated using numerical methods.				
	P is input to equation 46.1.				
	S is input to equation 46.2.				
	A is input to equation 46.5.				
	T is input to equation 46.7.				

Conversion of units

SI units	in other units, they must be converted into a SI-unit before entering the equations. The result will be in a SI-unit.			
	After the calculation units may be performed	on th orme	ne result may be converted to the desired unit. Conversion of ed, using the equations stated below:	
Temperature	<i>T</i> °F	=	$\frac{9}{5}T^{\circ}C + 32$	
	<i>T</i> °C	=	$\frac{5}{9}(T^{\circ}F-32)$	
cK⁺, cNa⁺, cCl⁻	cX (meq/L)	=	cX (mmol/L) where X is K ⁺ , Na ⁺ or Cl ⁻ .	
$c \operatorname{Ca}^{2+}$	$c\mathrm{Ca}^{2+}$ (meq/L)	=	$2 \times c \operatorname{Ca}^{2+}(\text{mmol/L})$ or	
	$c\mathrm{Ca}^{2+}$ (mg/dL)	=	$4.008 \times c \operatorname{Ca}^{2+}(\mathrm{mmol/L})$	
	$c\mathrm{Ca}^{2+}$ (mmol/L)	=	$0.5 \times c \operatorname{Ca}^{2+}$ (meq/L)or	
	$c\mathrm{Ca}^{2+}$ (mmol/L)	=	$0.2495 \times c \text{Ca}^{2+} (\text{mg/dL})$	
Pressure	p (mmHg)	=	$p(\text{torr}) = 7.500638 \times p(\text{kPa})$	
	p (kPa)	=	$0.133322 \times p(\text{mmHg}) = 0.133322 \times p(\text{torr})$	
<i>c</i> tHb	[4]			
	ctHb (g/dL)	=	$1.61140 \times ctHb \text{ (mmol/L)}$	
	ctHb (g/L)	=	$16.1140 \times ctHb \text{ (mmol/L)}$ or	
	<i>c</i> tHb (mmol/L)	=	$0.62058 \times ctHb$ (g/dL)	
	<i>c</i> tHb (mmol/L)	=	$0.062058 \times ctHb (g/L)$	
$ctCO_2, ctO_2,$	Vol %	=	$2.241 \times (\text{mmol/L})$	
$ciO_2(a-v), BO_2$	Vol %	=	mL/dL	
	mmol/L	=	$0.4462 \times (mL/dL)$	

Conversion of units, Continued

ΫO ₂	$\dot{VO}_2 \text{ (mmol/L)/min} = \dot{VO}_2/22.41 \text{ (mL/dL)/min}$					
<i>c</i> Glucose	[22]					
	<i>c</i> Glucose (mg/dL)	= $18.016 \times c$ Glucose (mmol/L) or				
	<i>c</i> Glucose (mmol/L)	= $0.055506 \times c$ Glucose (mg/dL)				
<i>c</i> Lactate	[22]					
	<i>c</i> Lactate (mg/dL)	= $9.008 \times c$ Lactate (mmol/L) or				
	<i>c</i> Lactate (mmol/L)	= $0.11101 \times c$ Lactate (mg/dL)				
	<i>c</i> Lactate (meq/L)	= c Lactate (mmol/L)				
	(conversion based or	n the molecular weight of lactic acid)				
ctBil	ctBil (µmol/L) =	$17.1 \times ctBil (mg/dL)$				
	ctBil (µmol/L) =	$1.71 \times ctBil (mg/L)$ or				
	ctBil (mg/dL) =	$0.0585 \times ctBil (\mu mol/L)$				
	ctBil (mg/L) =	$0.585 \times ctBil (\mu mol/L)$				

NOTE: All conversions of units are made by the analyzer.

Default values

Values

The following default values are used in the ABL800 FLEX analyzers, if other values are not keyed-in.

Т	=	37.0 °C (99 °F)
$FO_2(I)$	=	0.21 (21.0 %)
RQ	=	0.86
<i>c</i> tHb	=	9.3087 mmol/L, (15.00 g/dL or 150 g/L)
FCOHb	=	0.004 (0.4 %)
FMetHb	=	0.004 (0.4 %)
p50(st)	=	3.578 kPa (26.84 mmHg)

Altitude correction

Equation for
altitudeThe barometric pressure is measured by the analyzer's built-in barometer, and the
effect of barometric pressure on blood samples is compensated by the analyzer's
software.

Quality control result for pO_2 obtained on aqueous quality control solutions at low barometric pressure (at high altitudes) is affected as the properties of aqueous solutions differ from those of blood. The deviation from the pO_2 value obtained at sea level can be expressed by an altitude correction that can be added to the control ranges.

The relationship between the altitude and barometric pressure can be expressed by the following equation:

$$A = 16000 \times (1 + 0.004T) \times \frac{B_{ref} - B_{act}}{B_{ref} + B_{act}}$$

where:

A =altitude in m

T = temperature in °C

 B_{ref} = standard barometric pressure at sea level = 760 mmHg

 B_{act} = actual barometric pressure in mmHg.

Reference [23].

References

List of references	 The Deep PictureTM, critical information from blood gas analysis. Copenhagen: Radiometer Medical A/S, 1993: 1-14.
	2. Wandrup JH. Physicochemical logic and simple symbol terminology of oxygen status. Blood Gas News 1993; 2,1: 9-11.
	 Siggaard-Andersen O, Durst RA, Maas AHJ. Approved recommendation (1984) on physicochemical quantities and units in clinical chemistry. J Clin Chem Clin Biochem 1987; 25: 369-91.
	 Siggaard-Andersen O. The acid-base status of the blood. 4th revised ed. Copenhagen: Munksgaard, 1976.
	5. Siggaard-Andersen O, Wimberley PD, Fogh-Andersen N, Gøthgen IH. Measured and derived quantities with modern pH and blood gas equipment: calculation algorithms with 54 equations. Scand J Clin Lab Invest 1988; 48, Suppl 189: 7-15.
	 Burnett RW, Noonan DC. Calculations and correction factors used in determination of blood pH and blood gases. Clin Chem 1974; 20,12: 1499-1506.
	 Wimberley PD, Siggaard-Andersen O, Fogh-Andersen N, Zijlstra WG, Severinghaus JW. Hemoglobin oxygen saturation and related quantities: definitions, symbols and clinical use. Scand J Clin Lab Invest 1990; 50: 455-59. Available as AS104.
	 Siggaard-Andersen O, Gøthgen IH, Wimberley PD, Fogh-Andersen N. The oxygen status of the arterial blood revised: relevant oxygen parameters for monitoring the arterial oxygen availability. Scand J Clin Lab Invest 1990; 50, Suppl 203: 17-28. Available as AS108.
	9. Wandrup JH. Oxygen uptake in the lungs. Blood Gas News 1992; 1,1: 3-5.
	 Tietz NW, Logan NM. Reference ranges. In: Tietz NW, ed. Fundamentals of clinical chemistry. 3rd ed. Philadelphia: WB Saunders Company, 1987: 944-75.
	11. Siggaard-Andersen O, Wimberley PD, Fogh-Andersen N, Gøthgen IH. Arterial oxygen status determined with routine pH/blood gas equipment and multi-wavelength hemoximetry: reference values, precision and accuracy. Scand J Clin Lab Invest 1990; 50, Suppl 203: 57-66. Available as AS106.
	12. Siggaard-Andersen O, Thode J, Wandrup JH. The concentration of free calcium ions in the blood plasma ionized calcium. In: Siggaard-Andersen O, ed. Proceedings of the IFCC expert panel on pH and blood gases held at Herlev Hospital 1980. Copenhagen: Radiometer Medical A/S, 1981: 163-90. Available as AS79.
	13. Severinghaus JW. Blood gas calculator. J Appl Physiol 1966; 21,3: 1108-16. Available as ST36.
	14. Christiansen TF. An algorithm for calculating the concentration of the base excess of blood. In: Siggaard-Andersen O, ed. Proceedings of the IFCC expert panel on pH and blood gases held at Herlev Hospital 1980. Copenhagen: Radiometer Medical A/S, 1981: 77-81.

References, Continued

List of references (<i>continued</i>)	15. Kokholm G. Simultaneous measurements of blood pH, pCO ₂ , pO ₂ and concentrations of hemoglobin and its derivatives - a multicenter study. Scand J Clin Lab Invest 1990; 50, Suppl 203: 75-86. Available as AS107.
	16. Siggaard-Andersen O, Wimberley PD, Gøthgen IH, Siggaard-Andersen M. A mathematical model of the hemoglobin-oxygen dissociation curve of human blood and of the oxygen partial pressure as a function of temperature. Clin Chem 1984; 30: 1646-51.
	17. Siggaard-Andersen O, Wimberley PD, Gøthgen IH, Fogh-Andersen N, Rasmussen JP. Variability of the temperature coefficients for pH, pCO ₂ and pO ₂ in blood. Scand J Clin Lab Invest 1988; 48, Suppl 189: 85-88.
	18. Siggaard-Andersen O, Siggaard-Andersen M. The oxygen status algorithm: a computer program for calculating and displaying pH and blood gas data. Scand J Clin Lab Invest 1990; 50, Suppl 203: 29-45.
	 Bartels H, Christoforides C, Hedley-Whyte J, Laasberg L. Solubility coefficients of gases. In: Altman PL, Dittmer DS, eds. Respiration and circulation. Bethesda, Maryland: Fed Amer Soc Exper Biol, 1971: 16-18.
	20. Roughton FJW, Darling RC. The effect of carbon monoxide on the oxyhemoglobin dissociation curve. Am J Physiol 1944; 141: 17-31.
	21.Engquist A. Fluids electrolytes nutrition. Copenhagen: Munksgaard, 1985: 56- 68 and 118.
	22.Olesen H. <i>et al.</i> A proposal for an IUPAC/IFCC recommendation, quantities and units in clinical laboratory sciences. IUPAC/IFCC Stage 1, Draft 1, 1990: 1-361.
	23.Kokholm G, Larsen E, Jensen ST, ChristiansenTF. 3 rd ed. Blood gas measurements at high altitudes. Copenhagen: Radiometer Medical A/S, 1991. Available as AS109.

7. Solutions and gas mixtures

Overview

Introduction	This chapter gives information about all the solutions and gases used with the ABL800 FLEX analyzer, their composition, use, and consumption. The Certificates of Traceability for the calibrating solutions are found at the end of the chapter.			
Contents	This chapter contains the following topics.			
	General information			
	Calibration solutions			
	Rinse and Cleaning solutions	7-4		
	Electrolyte solutions	7-5		
	S5362 Hypochlorite solution	7-6		
	Gas mixtures (Gas 1 and Gas 2)	7-7		
	Traceability certificates	7-8		

General information

In Vitro Diagnostic Use	All the solutions described in this chapter are for <i>in vitro</i> diagnostic use.
Solution numbers	Each solution is identified with an "S" and is followed by 4 or 5 digits. The name of the solution comes after the number.
Gas names	The two gas mixtures used by the analyzer are named Gas 1 and Gas 2.
Expiration date	The expiration date of a solution found on the label or on a sticker on the side of the container is stated as a month and year. Do not use a product after its expiration date.
Safety Data Sheets	Safety Data Sheets for all solutions are available from your Radiometer distributor.
Re-ordering	Information for re-ordering solutions from Radiometer can be found in the ABL800 FLEX Operator's Manual, <i>Chapter 14</i> .

Calibration solutions

-

S1820 and S1830	Use:	For calibration of the pH, electrolyte and metabolite electrodes.				
	Quantity:	200 mL				
	Composition:	Contains the following substances with the stated nominal concentrations:				
		Solution	Substance	Concentration (mmol/L)		
		S1820	\mathbf{K}^+	4		
			Na^+	145		
			Ca ²⁺	1.25		
			Cl^-	102		
			<i>c</i> Glu	10		
			cLac	4		
			buffer	Maintains a pH of 7.40		
		S1830	\mathbf{K}^+	40		
			Na^+	20		
			Ca ²⁺	5		
			Cl^-	50		
			buffer	Maintains a pH of 6.9		
		The exact values are included in the bar code.				
	Additives:	Preservatives and surfactants.				
	Storage:	At 2-25 °C (36-77 °F).				
	Stability:	Expiration	date and Lot N	o. are printed on a label.		
		Stability ir	use: 4 weel	cs for \$1820		
			8 weel	cs for S1830.		
S7770 tHb	Use:	For calibra ABL700 S ctHb and c	tion of the cuve eries analyzers. tBil, or <i>c</i> tBil de	ette optical path length in the The calibrated value can be <i>c</i> tHb, epending on the analyzer version.		
	Quantity:	2 mL				
	Composition:	Salts, a bu	ffer, preservativ	e and a coloring agent.		
	Storage:	Keep in a dark place at 2 - 25 $^{\circ}$ C (36 - 77 $^{\circ}$ F).				
		After opening the solution must be used at once.				

Rinse and Cleaning solutions

S4980 Rinse Solution	Use:	For rinsing the liquid transport system after each measurement or calibration.
	Quantity:	600 mL
	Composition:	Contains salts, buffer, anticoagulant, preservative, and surfactants.
	Storage:	At 2-32 °C (36-90 °F).
	Stability:	Expiration date and Lot No. are printed on a separate label.
		When stored between 2-32 $^{\circ}$ C (36-90 $^{\circ}$ F), S4970 is stable for 25 months from the date of production, if unopened.
S8370 Cleaning Solution	Use:	For cleaning the liquid transport system automatically or called by operator.
	Quantity:	200 mL
	Composition:	Contains salts, buffer, anticoagulant, preservatives, and surfactants.
	Storage:	At 2-32 °C (36-90 °F).
	Stability	Expiration date and Lot No. are printed on a separate label.
S5370 Cleaning	Ilse.	For adding to the \$8370 Cleaning solution
Additive	Composition:	Contains nowdered strentokingse and strentodornase
	Storage	$\Delta t 2-8 ^{\circ}C (36-46 ^{\circ}E)$
	Stability:	Expiration date and Lot No, are printed on a separate label
	Studinty.	The Cleaning Solution with the Cleaning Additive is stable for 2 months in use.
	WARNING/ CAUTION:	Very toxic by inhalation, in contact with skin and if swallowed. Danger of cumulative effects. May cause sensitisation by inhalation and skin contact. Toxic to aquatic organisms, may cause long term adverse effects in the aquatic environment. After contact with skin, wash immediately with plenty of water. Wear suitable protective clothing. In case of accident or if you feel unwell seek medical advice immediately (show the label if possible). The material and its container must be disposed of as hazardous waste.

Electrolyte solutions

List of solutions The following electrolyte solutions contained in the electrode jackets of the Radiometer electrodes are used:

Electrolyte for	Quantity	Composition
E1001 reference electrode	0.6 mL in 4 pre-filled electrode jackets per D711 Membrane Box	Organic compounds and inorganic salts*
E788 <i>p</i> CO ₂ electrode	0.6 mL in 4 pre-filled electrode jackets per D788 Membrane Box	Inorganic salts, buffer, hygroscopic compound, preservative and surfactant.
E799 pO_2 electrode	0.6 mL in 4 pre-filled electrode jackets per D799 Membrane Box	Inorganic salts, organic compounds, buffer, preservative and surfactant.
E722 K electrode	0.6 mL in 4 pre-filled electrode jackets per D722 Membrane Box	Organic compounds, inorganic salts, buffer, acid, and preservative.
E755 Na electrode	0.6 mL in 4 pre-filled electrode jackets per D755 Membrane Box	Inorganic salts, organic compounds, preservative and surfactant.
E733 Ca electrode	0.6 mL in 4 pre-filled electrode jackets per D733 Membrane Box	Inorganic salts, organic compounds, buffer, preservative and surfactant.
E744 Cl electrode	0.6 mL in 4 pre-filled electrode jackets per D744 Membrane Box	Inorganic salts, organic compounds, preservative, surfactant and hygroscopic products.
E7066 Glucose and E7077 Lactate electrodes	0.6 mL in 5 plastic capsules to fill the electrode jackets (4 units) per D7066 and D7077 Membrane Boxes	Buffer, inorganic salts, thickening agent, preservative and surfactant.

***WARNING/CAUTION:** Irritating to eyes, respiratory system and skin. In case of contact with eyes, rinse immediately with plenty of water and seek medical advice.

Storage	Temperature:	Electrolyte solution:
	2-25 °C (36-77 °F)	For glucose electrode
	2-10 °C (36-50 °F)	For lactate electrode
	2-32 °C (36-90 °F)	For all other electrodes

_

Stability Expiration date and Lot No. are printed on a label on the side of the membrane box.

S5362 Hypochlorite solution

S5362 Hypochlorite Solution	Use:	For protein removal and decontamination according to the procedures described in the Operator's Manual, chapter 4: <i>Analyzer Menus and Programs</i> .
	Quantity:	100 mL. Delivered with a 1 mL syringe.
	Composition:	Contains sodium hypochlorite (pH ≈12).
	Storage:	Keep in a dark place at 2-8 °C (36-46 °F). After use, keep the bottle tightly capped to avoid contamination and decomposition.
	Stability:	Expiration date and Lot No. are printed on a separate label on the bottle.

-

Gas mixtures (Gas 1 and Gas 2)

Use For calibration of the pCO_2 and pO_2 electrodes.

Cylinder types The following types of Gas 1 cylinders are used depending on the geographical location of the analyser:

	Gas 1			Gas 2
	EU	USA	Japan	
Cylinder Volume	1 L	1 L	1 L	1 L
Gas Volume	10 L	33 L	25 L	10 L
Fill Pressure at 25 °C	140 psi (10 bar)	500 psi (34 bar)	375 psi (26 bar)	140 psi (10 bar)
Composition	19.76 % O ₂ , 5.60 % CO ₂ 74.64 % N ₂		< 0.04 % O ₂ , 11.22 % CO ₂ 88.78 % N ₂	

WARNING/ CAUTION:	Pressurized container. Non-flammable compressed gas. Do not breathe gas. Gas mixtures containing less than 19.5 % oxygen may cause suffocation. Protect from sunlight and do not expose to temperatures exceeding 50 °C (122 °F). Store and use with adequate ventilation. Keep away from oil and grease. Do not refill.		
NOTE:	The exact composition of each gas mixture is given in the barcode on the gas cylinder label. The barcode is entered by the barcode reader or manually.		
Stability	Gas 1 and Gas 2 are stable for 25 months from the date of filling.		
Storage	The gas cylinders should be stored between 2 - $32 \degree C$ (36 - $90 \degree F$).		

Traceability certificates

Certificate of Traceability

Product name:

Calibration Solution 1

Type:

Code:

944-128

S1820

Traceability of parameters:

Parameter	Unit	Traceable to	Expanded Uncertainty	
рН		The IUPACK pH scale and the NIST pH scale. The Chemical Reference Laboratory of Radiometer Medical A/S, which is the primary Danish national laboratory within pH, establishes the IUPAC pH scale under accreditation No. 119, granted by Danish Accreditation (DANAK).	0,009	
cK^+	mmol/L (37 °C)	NIST SRM	0,03	
cNa ⁺	mmol/L (37 °C)	NIST SRM	0,8	
cCa ²⁺	mmol/L (37 °C)	Calcium transfer standards according to IFCC	0,01	
cCl^{-}	mmol/L (37 °C)	NIST SRM	1,1	
<i>c</i> Glucose	mmol/L (37 °C)	NIST SRM	0,3	
cLactate	mmol/L (37 °C)	L8+) Lactici AcidLithium Salt. SIGMA L- 2250	0,2	

Certification: Each lot of this product has been tested, and the control limits, specified on the insert included with this product, have been established with the above traceability.

Kristin Visby

Head of Production Laboratory

Barne Kristense

H.B. Kristensen Head of Chemical Reference Laboratory

The traceability of the above parameters is fully described in booklet AS 117: Traceability to the Primary Reference Standards at Radiometer, available from Radiometer.

Radiometer™ and AutoCheck™ are trademarks of Radiometer ApS. ©Radiometer ApS, DK-2700 Brønshøj, Denmark, 2004. All Rights Reserved. 990-252 • 0403A

Product nar	ne:	Calibration Solution 2	
Type: \$1830		S1830	
Code:	1	944-129	
Fraceability	of parameters:		Fynandad
Parameter	Unit	Traceable to	Uncertainty
рН		The IUPAC pH scale and the NIST pH scale. The Chemical Reference Laboratory of Radiometer Medical ApS, which is the primary Danish national laboratory within pH, establishes the IUPAC pH scale under accreditation No. 119, granted by Danish Accreditation (DANAK).	0.006
cK ⁺	mmol/L (37 °C)	NIST SRM	0.37
cNa ⁺	mmol/L (37 °C)	NIST SRM	0.4
cCa ²⁺	mmol/L (37 °C)	Calcium transfer standards according to IFCC	0.06
cCl^{-}	mmol/L (37 °C)	NIST SRM	0.5
	of the label for th	his product have been established with the abov Bjanne Kn3t	e traceability.
Head o	Kristin Visby f Production Labora	H.B. Kristensen atory Head of Chemical Reference	Laboratory

Radiometer™ and AutoCheck™ are trademarks of Radiometer A/S. ©Radiometer A/S, DK-2700 Brønshøj, Denmark, 2004. All Rights Reserved. 990-253 • 0403A

-

Certificate of Traceability

Product name:

tHB Calibration Solution

Type: S7770

Code: 944-021

Traceability of parameters:

Parameter Unit		Traceable to	Expanded Uncertainty	
<i>c</i> tHb	g/d1	NIST SRM (absorbance, wavelength). Hemoglobin-cyanide standard. J.T. Baker (Product No. 3061)	0.2	
sO ₂	%	NIST SRM (absorbance, wavelength). NIST SRM gas, whole blood sample, pH = 7.4, $ctHb = 15$ g%, $sO_2 = 100$ %	0.4	

Certification: Each lot of this product has been tested, and the control limits, specified on the insert included with this product, have been established with the above traceability.

Hill Jodenstrom

Helle Søderstrøm Head of Production Laboratory

Bjane Kristense

H.B. Kristensen Head of Chemical Reference Laboratory

The traceability of the above parameters is fully described in booklet AS 117: *Traceability to the Primary Reference Standards at Radiometer*, available from Radiometer.

Radiometer™ and AutoCheck™ are trademarks of Radiometer A/S. ©Radiometer A/S, DK-2700 Brønshøj, Denmark, 2002. All Rights Reserved. 989-464 • 0210B

			44	
	Certifi	cate of Traceability		
Product nan	ne:	Calibration Gas 1, EUR		
Gas mixture, 1 L				
Code: 962-169				
Traceability	of parameters:			
Parameter	Unit	Traceable to	Expanded Uncertainty	
CO ₂	mol %	Primary, gravimetrically prepared standards. Traceable to NIST traceable weights.	0.03	
O ₂	mol %	Primary, gravimetrically prepared standards. Traceable to NIST traceable weights.	0.03	
Bjane Hutter H.B. Kristensen Head of Chemical Reference Laboratory The traceability of the above parameters is fully described in booklet AS 117: <i>Traceability to</i> <i>the Primary Reference Standards at Radiometer</i> , available from Radiometer.				

Radiometer™ is a trademark of Radiometer A/S. ©Radiometer A/S, DK-2700 Brønshøj, Denmark, 2003. All Rights Reserved. 989-854 • 0303A

-

Certificate of Traceability

Product name:

Calibration Gas 2, EUR

Type:

Gas mixture, 1 L

962-170

Code:

Traceability of parameters:

Parameter	Unit	Traceable to	Expanded Uncertainty
CO ₂	mol %	Primary, gravimetrically prepared standards. Traceable to NIST traceable weights.	0.03
O ₂	mol %	Primary, gravimetrically prepared standards. Traceable to NIST traceable weights.	0.03

Certification: Each lot of this product has been tested, and the nominal values, specified on the label of this product, have been established with the above traceability.

Bjarne Kristense H.B. Kristensen Head of Chemical Reference Laboratory

The traceability of the above parameters is fully described in booklet AS 117: Traceability to the Primary Reference Standards at Radiometer, available from Radiometer.

Radiometer[™] is a trademark of Radiometer A/S. ©Radiometer A/S, DK-2700 Brønshøj, Denmark, 2003. All Rights Reserved. 989-855 • 0303A

Index

\boldsymbol{A}	
Absorbance 3- Additional information about FLEXMODE 5-4 Altitude Correction 6-5 Amperometric method 2-	-4 46 51 -2
B	
- Bias 5.	_2
BiasABL chart description	-5
С	
Calibration	-3 -4 -3 -7
Continuous spectrum	-5
Contribution to imprecision specifications from HbF correction	51 10
Conversion of Units	10 -7
Correction Factors for Oximetry Parameters and Bilirubin	-4
Corrrection Factors for Electrolyte and Metabolite Parameters	-7
ctBil sensitivity for pH changes	54
D	
Default Values 6-5 Definition of terms and test conditions 5- Derived Parameters 6-1 Determining concentrations 3- Drift 1-	50 -2 17 -6 -6
Ε	
Electrolyte electrodes 1-2 Calibration solution values 1-2 Corrections 1-2 Drift 1-2 Sensitivity 1-2 Stability criteria 1-3 Status 1-2	25 29 27 26 32 26
Electrolyte Electrodes	22
F	
FHbF sensitivity for pH changes	52
Н	
HbF versus HbA	-7
Ι	
Imprecision 5- Imprecision chart 5- Input Parameters 6-1 Interference tests 6-1	-3 -6 [4
Electrolytes	17 10
Nietadonies	ŧð

Oximetry parameters	5-50
pH/blood gas5	5-47
L	
Lambert-Beer's law	3-4
List of Equations	5-27
M	
Matrix of constants	3-6
Mean Corpuscular Hemoglobin Concentration	5 5 2
Magurad parameters	37
Measured Parameters	65
Measuring time	17
Metabolite electrodes	1-/
Corrections	17
	2 - 17
Dilit	2-10
Sensitivity	2 - 13
	2-19
Zero current	2-13
Metabolite Electrodes	2-12
N	
Nernst equation	1-24
0	
Optical System	3-2
Oximetry and bilirubin	
Measurement and Corrections	3-9
Oxyhemoglobin Dissociation Curve (ODC)	5-43
Р	
P Parameters	
P Parameters Pangas and limits	6.2
P Parameters Ranges and limits	6-3
P Parameters Ranges and limits Symbols rCOelastrode	6-3 6-2
P Parameters Ranges and limits Symbols pCO ₂ electrode Corrections blood complex	6-3
P Parameters Ranges and limits Symbols pCO2 electrode Corrections - blood samples 1 Corrections - blood samples	6-3 6-2
P Parameters Ranges and limits Symbols pCO2 electrode Corrections - blood samples 1 Corrections - expired air samples	6-3 6-2 1-17 1-19
P Parameters Ranges and limits Symbols pCO2 electrode Corrections - blood samples 1 Corrections - expired air samples 1 Drift 1 Sensitivity	6-3 6-2 1-17 1-19 1-16
P Parameters Ranges and limits Symbols pCO2 electrode Corrections - blood samples 1 Corrections - expired air samples 1 Drift 1 Sensitivity 1 Stability existerie	6-3 6-2 1-17 1-19 1-16 1-16
P Parameters Ranges and limits Symbols pCO2 electrode Corrections - blood samples I Corrections - expired air samples I Drift I Sensitivity I Stability criteria	6-3 6-2 1-17 1-19 1-16 1-16 1-20
P Parameters Ranges and limits Symbols pCO2 electrode Corrections - blood samples 1 Corrections - expired air samples 1 Drift 1 Sensitivity 1 Stability criteria 1 Status 1 Correctorde	6-3 6-2 1-17 1-19 1-16 1-16 1-20 1-16
P Parameters Ranges and limits Symbols pCO2 electrode Corrections - blood samples 1 Corrections - expired air samples 1 Drift 1 Sensitivity 1 Stability criteria 1 Status 1 PCO2 electrode 1 Performance test results - bilimibin	6-3 6-2 1-17 1-19 1-16 1-16 1-20 1-16 1-14
P Parameters Ranges and limits Symbols pCO_2 electrode Corrections - blood samples 1 Corrections - expired air samples 1 Drift 1 Sensitivity 1 Stability criteria 1 Status 1 PCO2 electrode 1 Stability criteria 1 Status 1 Performance test results - bilirubin 5 Performance test results - pCa^{2+}	6-3 6-2 1-17 1-19 1-16 1-16 1-20 1-16 1-14 5-40
P Parameters Ranges and limits Symbols pCO_2 electrode Corrections - blood samples 1 Corrections - expired air samples 1 Drift 1 Sensitivity 1 Stability criteria 1 Status 1 PcO2 electrode 1 Status 1 PcO2 electrode 1 Status 1 Status 1 Performance test results - bilirubin 5 Performance test results - cCa^{2+}	6-3 6-2 1-17 1-19 1-16 1-16 1-16 1-16 1-14 5-20 5-22
P Parameters Ranges and limits Symbols pCO_2 electrode Corrections - blood samples Corrections - expired air samples Drift Sensitivity Stability criteria Stability criteria PCO2 electrode PCO2 electrode Corrections - expired air samples In Drift Sensitivity In Stability criteria Status In PCO2 electrode In PCO2 electrode In Performance test results - bilirubin Sensitivity Sensitivity Performance test results - cCl ²⁺ Sensitivity Sensitivity Sensitivity Sensitivity Status Status Performance test results - cCl ²⁺ Sensitivity Sensitivity Sensitivity Sensitivity Sensitivity Sensitivity Sensitivity Sensitivity Sensity Sensitivity	6-3 6-2 1-17 1-19 1-16 1-16 1-16 1-16 1-14 5-40 5-22 5-20 5-20
P Parameters Ranges and limits Symbols pCO_2 electrode Corrections - blood samples 1 Corrections - expired air samples 1 Drift 1 Sensitivity 1 Stability criteria 1 Status 1 PCO2 electrode 1 Status 1 Status 1 PcO2 electrode 1 Performance test results - bilirubin 5 Performance test results - cCI^- 5 Performance test results - $cGlu$	6-3 6-2 1-17 1-19 1-16 1-16 1-16 1-16 1-16 1-14 5-40 5-22 5-20 5-24 5-24
P Parameters Ranges and limits Symbols pCO_2 electrode Corrections - blood samples Corrections - expired air samples Drift Sensitivity I Stability criteria Status pCO_2 electrode Corrections - expired air samples I Drift Sensitivity I Stability criteria I Status I PcO2 electrode I Performance test results - bilirubin Sensitivity Sensitivity Reformance test results - cCl ⁻ Sensitivity Sensitivity Sensitivity Status I Status I Performance test results - cCl ⁻ Sensitivity Sensitivity Sensitivity Sensitivity Sensitivity Sensitivity Sensity Sens	6-3 6-2 1-17 1-19 1-16 1-16 1-16 1-16 1-14 5-40 5-22 5-20 5-24 5-26 5-24
P Parameters Ranges and limits Symbols pCO_2 electrode Corrections - blood samples I Corrections - expired air samples I Drift Sensitivity I Stability criteria Status I PCO2 electrode I Status I Status I PcO2 electrode I Performance test results - bilirubin Series Performance test results - cCl^{-} Series Performance test results - $cGlu$ Series Performance test results - $cGlu$ Series Performance test results - $cLac$	6-3 6-2 1-17 1-19 1-16 1-16 1-16 1-16 1-14 5-40 5-22 5-20 5-24 5-16 5-26
PParameters Ranges and limits Symbols pCO_2 electrode Corrections - blood samples pCO_2 electrodeCorrections - expired air samples $Drift$ $BrithDriftSensitivityIStability criteriaStatuspCO_2 electrodeIPcO_2 electrodeIPcO_2 electrodeIPcO_2 electrodeIPerformance test results - bilirubinPerformance test results - cCa^{2+}Performance test results - cCl^ Serformance test results - cCluSerformance test results - cLacPerformance test results - cNa^+Serformance test results - cNa^+Serformance test results - cNa^+Serformance test results - cNa^+$	6-3 6-2 1-17 1-19 1-16 1-16 1-16 1-16 1-14 5-40 5-22 5-20 5-24 5-16 5-26 5-28
P Parameters Ranges and limits Symbols pCO_2 electrode Corrections - blood samples 1 Corrections - expired air samples 1 Drift 1 Sensitivity 1 Stability criteria 1 Status 1 Status 1 Status 1 PcO2 electrode 1 Status 1 Status 1 Status 1 PcO2 electrode 1 Performance test results - bilirubin 9 Performance test results - cCl ²⁺ 9 Performance test results - cCl ²⁺ 9 Performance test results - cGlu 5 Performance test results - cLac 9 Performance test results - cNa ⁺ 9 Performance test results - ctHb 9 <td>6-3 6-2 1-17 1-19 1-16 1-16 1-16 1-16 1-16 1-14 5-20 5-22 5-20 5-24 5-26 5-26 5-28 5-28 5-28</td>	6-3 6-2 1-17 1-19 1-16 1-16 1-16 1-16 1-16 1-14 5-20 5-22 5-20 5-24 5-26 5-26 5-28 5-28 5-28
PParameters Ranges and limits Symbols pCO_2 electrode Corrections - blood samples Corrections - expired air samples1Corrections - expired air samples1Drift Sensitivity Stability criteria1Status PCO_2 electrode1pCO_2 electrode1PcO_2 electrode1Performance test results - bilirubin1Performance test results - cCla ²⁺ 1Performance test results - cCl1Performance test results - cCl2Performance test results - cCla2Performance test results - cNa ⁺ 2Performance test results - cNa ⁺	6-3 6-2 1-17 1-19 1-16 1-16 1-16 1-16 1-14 5-20 5-22 5-20 5-24 5-22 5-26 5-26 5-28 5-28 5-28 5-20 5-28
PParameters Ranges and limits Symbols pCO_2 electrode $COrrections - blood samplesCorrections - blood samples1Corrections - expired air samples1Drift1Sensitivity1Stability criteria1Status1PCO2 electrode1PC02 electrode1Performance test results - bilirubin1Performance test results - cCa^{2+}1Seriformance test results - cCl^{-1}2Performance test results - cCl^{-1}2Performance test results - cCl^{-1}2Performance test results - cCl^{-1}2Performance test results - cR^{+}2Performance test results - cLac2Performance test results - cNa^{+}2Performance test results - pCO_{2}$	6-3 6-2 1-17 1-19 1-16 1-16 1-16 1-16 1-14 5-20 5-22 5-20 5-22 5-26 5-26 5-28 5-28 5-28 5-28 5-30 5-10
PParameters Ranges and limits Symbols pCO_2 electrode Corrections - blood samples DO_2 electrodeCorrections - expired air samples $Drift$ $Stability$ criteria $Stability$ criteria $Stability$ criteria PCO_2 electrode PCO_2 electrode PCO_2 electrode PCO_2 electrode PCO_2 electrode $Performance test results - bilirubinPerformance test results - cCl^2+Performance test results - cClaPerformance test results - cClaPerformance test results - cClaPerformance test results - cClaPerformance test results - cLacPerformance test results - cNa^+Performance test results - cNa^+Performance test results - cHbPerformance test results - pCO_2Performance Test Results - pHParformance Test Results - pHParformance Test Results - pH$	6-3 6-2 1-17 1-19 1-16 1-16 1-16 1-16 1-14 5-20 5-24 5-26 5-24 5-26 5-24 5-26 5-28 5-28 5-28 5-28 5-30 5-10 5-8
PParameters Ranges and limits Symbols pCO_2 electrodeCorrections - blood samplesCorrections - expired air samplesDriftSensitivityStability criteriaStatus pCO_2 electrodePerformance test results - bilirubinPerformance test results - cCl ⁻ Performance test results - cCl ⁻ Performance test results - cCl ⁻ Performance test results - cCl ⁻ Sperformance test results - cCl ⁻ Performance test results - cClacPerformance test results - cLacPerformance test results - cNa ⁺ Performance test results - cHbSperformance test results - cNa ⁺ Sperformance test results - pCO2Sperformance test results - pCO2Sperformance test results - pO2Sperformance test results - pO2	6-3 6-2 1-17 1-19 1-16 1-16 1-16 1-16 1-14 5-20 5-24 5-22 5-24 5-26 5-24 5-26 5-28 5-28 5-28 5-30 5-10 5-8 5-13
P Parameters Ranges and limits Symbols pCO_2 electrode Corrections - blood samples Drift Sensitivity Stability criteria Status pCO_2 electrode Drift Stability criteria Status pCO_2 electrode Performance test results - bilirubin Performance test results - bilirubin Performance test results - cCl ²⁺ Performance test results - cCl ²⁺ Performance test results - cCl ²⁺ Sperformance test results - cCl ²⁺ Sperformance test results - cCl ²⁺ Performance test results - cCl ²⁺ Sperformance test results - cCl ² Sperformance test results - cLac Sperformance test results - cNa ⁺ Sperformance test results - oximetry Sperformance test results - pCO ₂ Sperformance test results - pO ₂ <	6-3 6-2 1-17 1-19 1-16 1-16 1-16 1-16 1-14 5-20 5-24 5-22 5-24 5-26 5-24 5-26 5-28 5-28 5-28 5-28 5-10 5-8
P Parameters Ranges and limits Symbols pCO_2 electrode Corrections - blood samples Drift Sensitivity Stability criteria Status pCO_2 electrode PCO_2 electrode PCO_2 electrode Drift Sensitivity Stability criteria Status pCO_2 electrode Performance test results - bilirubin Serification Performance test results - cCl ²⁺ Serification Performance test results - cNa ⁺ Serification Performance test results - cNa ⁺ Serification <	6-3 6-2 1-17 1-19 1-16 1-16 1-20 1-16 1-14 5-40 5-22 5-20 5-24 5-26 5-28 5-28 5-28 5-28 5-10 5-8 5-13
P Parameters Ranges and limits Symbols pCO_2 electrode Corrections - blood samples Drift Drift Sensitivity Stability criteria Status pCO_2 electrode Performance test results - bilirubin Performance test results - bilirubin Performance test results - cCl ⁻ Speriormance test results - cCl ⁻ Sperformance test results - cCl Sperformance test results - cCl Sperformance test results - cCl Performance test results - cCl Sperformance test results - cCl Performance test results - cCl Performance test results - cCla Performance test results - cLac Performance test results - cLa Performance test results - cNa ⁺ Sperformance test results - pCO2 Sperformance test results - pCO2 Sperformance test results - pCO2 Sperformance test results - pO2	6-3 6-2 1-17 1-19 1-16 1-16 1-16 1-16 1-16 1-16 1-16
PParameters Ranges and limits Symbols pCO_2 electrodeCorrections - blood samples1Corrections - expired air samples1DriftSensitivity1StatuspCO2 electrode11Status1Performance test results - bilirubin2Performance test results - cCa ²⁺ 2Performance test results - cCl2Performance test results - cGlu2Performance test results - cCl2Performance test results - cK ⁺ 2Performance test results - cNa ⁺ 2Performance test results - cNa ⁺ 2Performance test results - cNa ⁺ 2Performance test results - pC022Performance test results - pD22Performance test results - pD32Performance test results - pD42Performance test results - pD32Performance test results - pD32Performance test results - pD42Performance test results - pD33223333444<	6-3 6-2 1-17 1-19 1-16 1-16 1-16 1-16 1-14 5-20 5-22 5-20 5-24 5-26 5-28 5-28 5-28 5-28 5-28 5-28 5-28 5-20 5-28 5-28 5-28 5-20 5-21 1-10 1-10 1-10 1-10 1-10 1-10 1-10 1

Status1-10pH electrode1-9 pO_2 electrode2-8Corrections - blood samples2-10Drift2-6Sensitivity2-5Stability criteria2-10Zero point2-6 pO_2 electrode2-4Potentiometric method1-2
R
Reference Electrode1-8Repeatability5-2Repeatbility chart5-6Residual spectrum3-8S
Sensitivity
I Test conditions 5-4 The Deep Picture TM 6-2 Total absorbance 3-4
U
Units and Numerical Format of Derived Parameters

Date of Issue

Manufacturer:

Radiometer Representative:

ABL800 FLEX Reference Manual from software identification version 4.12

Publication: December 2004 Edition: 200412B Code Number: 989-963

Specifications are based on 33694-A4.

